Что такое ячейка микросхемы флэш памяти. Flash-память

Микросхемы флеш-памяти eeprom серии 25xxx широко применяются в микроэлектронике. В частности, в современных телевизорах и материнских платах в 25xxx хранится прошивка биоса. Перепрошивка 25xxx осуществляется по интерфейсу SPI, в чем и заключается отличие этих микросхем от флеш-памяти семейства 24xxx, которые шьются по i2c(квадратная шина).

Соответственно, для чтения/стирания/записи 25xxx нужен SPI-программатор. Одним из самых дешевых вариантов программаторов для этой цели является USBasp, который стоит смешные деньги- с доставкой всего около 2$ на ебее. В свое время я купил себе такой для программирования микроконтроллеров. Теперь мне понадобилось прошить не микроконтроллер, а SPI-флеш и решено было им воспользоваться.

Забегая вперед скажу, что прошивка от Tifa работает, микросхемы 25xxx шьются. Кстати, кроме 25xxx, модифицированный программатор рассчитан на работу с 24xxx и Microwire.

1. Перепрошивка USBasp

Сначала нужно замкнуть контакты J2:

Лично я не просто замкнул, а впаял в контакты переключатель:

При замкнутых контактах J2 (это у меня переключатель в положении вправо) USBasp переходит в режим готовности к перепрошивке.

Сам себя USBap перепрошить не может, поэтому нужен еще один программатор. USBasp как бы оказывается в положении хирурга, который не может сам себе вырезать аппендикс и просит друга помочь. Для перепрошивки USBasp я использовал самодельный программатор AVR910 , но для одного раза можно по-быстрому за пару минут спаять программатор «5 проводков» , который состоит всего-лишь из одного разъема LPT и 5 резисторов.

Подключаем программатор к USBasp:



Теперь идем на форум альтернативной прошивки от Tifa, в самом верхнем посте находим и качаем архив с последней прошивкой и ПО.

Находим там файл mega8.hex, это и есть альтернативная прошивка для USBasp.

Запускаем CodeVisionAvr (я использую версию 2.0.5), выставляем настройки программатора: Settings-> Programmer.

Устанавливаем настройки записи: Tools->Chip programmer. Выбираем чип Atmega8L, именно такой стоит на USBasp. Фьюзы не выставляем- те, что надо, уже прошиты в чипе. Остальные настройки оставляем по умолчанию.

Стираем старую программу USBasp: Program-> Erase chip.

Открываем файл прошивки mega8.hex: File-> Load flash.

Перепрошиваем USBasp: Program-> Flash.

Если прошла запись и не выдало сообщение об ошибке, значит альтернативная прошивка благополучно прошита в USBasp. Теперь USBasp может не только шить AVR-микроконтроллеры, как раньше, но еще и работать с флеш-памятью. Размыкаем контакты J2, что бы USBasp снова перешел в режим программатора.

Теперь проверим, видит ли Windows 7 x86 этот программатор. Вставляем USBasp в USB и… система пишет «USBasp не удалось найти драйвер». Понятно, нужно установить драйвер. Но драйверов в скачанном на форуме нет, их нужно скачать на родном сайте USBasp , оригинальные драйвера подходят и для модифицированного программатора. Скачали, установили, Win7 увидела программатор, все ок. Впрочем, я программирую микроэлектронику на ноутбуке с WinXP, она тоже после установки драйверов видит программатор.

2. Площадка для подключения USBasp к микросхеме 25xxx DIP

Теперь нужно подготовить площадку для программирования 25xxx. Я это сделал на макетной плате по такой схеме:

3. Прошивка микросхем 25xxx через USBasp

Для прошивки 25xxx через модифицированный USBasp используется программа AsProgrammer, которая тоже есть в .

Для примера, поработаем с микросхемой Winbond 25×40. Запускаем AsProgrammer, ставим режим работы SPI и выбираем тип микросхемы: Микросхема-> SPI-> Winbond->…

… и видим, что W25X40 в списке нет. Что же, тогда заполним параметры микросхемы вручную. Находим мануал на Winbond 25X40 и там на странице 4 видим такие параметры:

Эти параметры вносим сюда:

Подключаем USBasp к компьютеру и микросхеме Winbond 25×40:

С помощью кнопок «прочитать», «записать», «стереть», проверяем работу программатора:

Только нужно учесть, что перед тем, как что-то записать в микросхему, сначала нужно выставить: Настройки-> Проверка записи, что бы после записи прошивки в микросхему была выполнена проверка на соответствие того, что писали тому, что в итоге записали. Это немаловажная вещь, потому что если прошивку делать не на очищенный чип, в него запишется чёрт-те что. Поэтому сначала нужно стереть микросхему, а затем только проводить ее запись.

Благодаря прошивке от Tifa дешевый китайский программатор USBasp теперь умеет работать с микросхемами flash-памяти eeprom 25xxx. Теоретически еще может работать c 24xxx и Microwire, но я проверил только работу с 25xxx.

UPD1:
Оказывается, такую же прошивку можно записать и в программатор AVR910. Тогда он тоже будет работать с flash-памятью 25xxx:

Многие эксперты сходятся во мнении, что одной из основных причин небывалого спроса на флэш-память стало развитие рынка мобильных коммуникаций, хотя и не только это. Как известно, флэш-память - это одна из разновидностей энергонезависимой памяти (nonvolatile memory). В основе работы запоминающей ячейки данного типа памяти лежит физический эффект Фаули-Нордхайма (Fowler-Nordheim), связанный с лавинной инжекцией зарядов в полевых транзисторах. Как и в случае EEPROM, содержимое флэш-памяти программируется электрическим способом, однако основное ее преимущество по сравнению с той же EEPROM - высокая скорость доступа и довольно быстрое стирание информации. Считается, что название "флэш" применительно к типу памяти переводится как "вспышка". На самом деле это не совсем так. Одна из версий появления этого термина состоит в том, что впервые в 1989-90 гг. специалисты компании Toshiba употребили слово flash в значении "быстрый, мгновенный" при описании своих новых микросхем.

В настоящее время можно выделить две основные структуры построения флэш-памяти: память на основе ячеек NOR (логическая функция ИЛИ-НЕ) и NAND (логическая функция И-НЕ). Структура NOR состоит из параллельно включенных элементарных ячеек хранения информации (рис. 1). Такая организация ячеек обеспечивает произвольный доступ к данным и побайтную запись информации. В основе структуры NAND лежит принцип последовательного соединения элементарных ячеек, образующих группы (по 16 ячеек в одной группе), которые объединяются в страницы, а страницы - в блоки (рис. 2). При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение происходит к блокам или к группам блоков.

Рис. 1. Архитектура NOR. Рис. 2. Архитектура NAND.

Ячейка традиционной флэш-памяти представляет собой транзистор с двумя изолированными затворами: управляющим и "плавающим". Важная особенность последнего - способность удерживать электроны, т. е. заряд. Кроме того, в ячейке имеются электроды, называемые "сток" и "исток". При программировании между ними, за счет воздействия положительного поля на управляющем затворе, создается канал - поток электронов. Некоторые из электронов благодаря наличию большей энергии преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, - нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтения данных из ячейки.

Различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее, чем в памяти NOR. Поскольку 16 прилегающих друг к другу ячеек памяти NAND соединены последовательно, без контактных промежутков, достигается высокая плотность размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. Последовательная организация ячеек обеспечивает высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. Ввиду того, что туннелирование осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у памяти NAND ниже, чем в других технологиях флэш-памяти, в результате чего она имеет большее число циклов программирования/стирания. А поскольку туннелирование используется как для программирования, так и для стирания, энергопотребление микросхемы памяти оказывается низким. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Стоит также обратить внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а следовательно, снизить себестоимость. Но и 1 бит - далеко не предел. Еще в 1992 г. команда инженеров корпорации Intel начала разработку устройства флэш-памяти, одна ячейка которого хранила бы более одного бита информации. Уже в сентябре 1997 г. была анонсирована микросхема памяти Intel StrataFlash емкостью 64 Мбит, одна ячейка которой могла хранить 2 бита данных. Кроме того, сегодня существуют образцы с 4-битными ячейками. В такой памяти используется технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что их заряд делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация битов. Теоретически прочитать/записать можно и более 4 бит, однако на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении.

В число крупнейших производителей флэш-памяти входят корпорации Samsung Electronics, Toshiba, Spansion (AMD-Fujitsu), Intel, STMicroelectronics. Одно из направлений совершенствования их продукции - уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия флэш-памяти. В ближайшие годы производители флэш-памяти типа NAND намерены расширить рынок своих микросхем и начинить ими устройства, в которых сейчас используются жесткие диски или память других типов. В результате в память мобильного телефона можно будет записать несколько часов видео, а срок службы батарей в ноутбуках увеличится вдвое или более. Не исключено, что к концу десятилетия элементы NAND благодаря растущей емкости полностью вытеснят жесткие диски из некоторых моделей мини-ноутбуков.

Эволюция NAND отвечает закону Мура, т. е. каждые два года число транзисторов в микросхеме удваивается. Фактически же технология развивается еще быстрее. Если несколько лет назад элементы NAND изготавливались на устаревших производственных линиях, то теперь производители перевели этот процесс на самое современное оборудование, что ускорило развитие продуктов. Сейчас их емкость удваивается каждый год: например, за 4-Гбит микросхемами NAND 2005 г. последовали микросхемы емкостью 8 и 16 Гбит.

В качестве движущего фактора развития этой технологии выступает стоимость: элементы NAND дешевеют примерно на 35-45% в год. В прошлом году 1 Гбайт флэш-памяти обходился производителям устройств примерно в 45 долл. Эксперты полагают, что в этом году цена упадет до 30, в 2008-м - до 20, а к 2009 г. - до 9 долл. При цене 45 долл. за 1 Гбайт флэш-память оказывается почти в сто раз дороже памяти на жестких дисках, которую производители могут покупать примерно по 65 центов за гигабайт. Поэтому пока, даже при самых выгодных для флэш-технологии условиях сравнения, она неизбежно проигрывает по стоимости. С другой стороны, эта память дает заметный выигрыш в пространстве и потребляемой энергии.

Технология Robson

В конце прошлого года специалисты корпорации Intel (http://www.intel.сom) продемонстрировали технологию Robson, сокращающую время загрузки системы и приложений. ПК с такой технологией извлекает данные и приложения не с жесткого диска, а из дополнительной карты флэш-памяти и ПО Intel. Флэш-память работает быстрее, чем жесткий диск, так что время загрузки сокращается. При этом у ноутбуков должен увеличиться срок службы батареи, так как меньше работает электродвигатель жесткого диска. Считается, что Robson уменьшит время ожидания с момента нажатия на кнопку включения ПК до момента, когда на нем можно начинать работать, а также время перехода ПК из состояния ожидания в активное состояние и время запуска приложений. Карта Robson может вмещать от 64 Мбайт до 4 Гбайт памяти. Чем больше емкость, тем больше данных или приложений можно хранить на карте для ускорения их загрузки.

Intel разработала ПО для Robson, но сами кристаллы будут поставляться сторонними производителями. В Robson используется флэш-память типа NAND, которую производят Samsung, Toshiba и другие компании. Сама Intel пока выпускает флэш-память типа NOR, которая не применяется для операций "чтение-запись-стирание" подобного рода.

Флэш-память Spansion

Вообще говоря, Spansion (http://www.spansion.com) - это всемирно известная марка FASL LLC, компании, созданной совместно AMD и Fujitsu для разработки и производства флэш-памяти. Сегодня FASL LLC - крупнейший мировой производитель флэш-памяти NOR. Решения Spansion в области флэш-памяти применяются в аппаратуре AMD и Fujitsu во всем мире. Устройства флэш-памяти Spansion (рис. 3) охватывают широкий диапазон плотности и свойств и пользуются спросом в различных областях промышленности: в числе ее потребителей - лидеры рынков беспроводных устройств, сотовой телефонии, автомобилей, сетевого оборудования, телекоммуникаций и потребительской электроники. Существует множество продуктов Spansion Flash, в том числе устройства на основе современной технологии MirrorBit, награжденные призами продукты семейства одновременного чтения/записи (SRW), сверхнизковольтные устройства флэш-памяти с питающим напряжением 1,8 В и устройства с пакетной и страничной организацией памяти. Напомним, что именно специалисты корпорации AMD оказались первыми в разработке микросхем флэш-памяти, которые допускали одновременную запись и чтение информации. Это стало возможным благодаря делению кристалла на два независимых банка памяти. При использовании памяти данного типа можно хранить управляющие коды в одном банке, а данные - в другом. В таком случае не требуется прерывать программу, если нужно выполнить операцию стирания или записи в банке данных.

Технология Spansion MirrorBit (рис. 4) позволяет хранить два бита данных в одной ячейке памяти, что приводит к удвоению физической плотности памяти. Эта технология упрощает производство, что приводит к снижению издержек и повышению окупаемости. Ликвидируются как минимум 10% от общего количества шагов производственного процесса и 40% важнейших шагов производства по сравнению с технологией MLC NOR.

Рис. 4. Архитектура MirrorBit.

В начале прошлого года была представлена технология MirrorBit второго поколения, оптимизированная для использования в беспроводных решениях с напряжением питания 1,8 В. Она была позиционирована как наилучшее в отрасли решение по соотношению цена/производительность, а также как дающая самый широкий среди всех флэш-технологий NOR набор функциональных возможностей и самые высокие показатели плотности. Заявлено, что эта технология позволяет создавать многофункциональные продукты, которые поддерживают одновременное выполнение операций чтения/записи, высокоскоростной интерфейс пакетного режима, систему безопасности Advanced Sector Protection и крайне низкий уровень энергопотребления.

Первенство технологии MirrorBit по соотношению цена/производительность достигается за счет фундаментальных ее преимуществ перед технологией MLC с плавающим затвором, обеспечивающих увеличенный объем выработки, отличное качество и высокую пропускную способность производственных линий. Объем выработки для высокоплотных микросхем (емкостью от 128 до 512 Мбит) увеличен почти на 30% по сравнению с технологией MLC с плавающим затвором, что значительно улучшает структуру себестоимости автономных и многокристальных продуктов. Уменьшенное на 40% число критических уровней маскирования снижает чувствительность к дефектам в процессе изготовления и повышает качество готового продукта. И наконец, пропускная способность заводских производственных линий выросла на 10% за счет упрощения и рационализации процесса изготовления.

Технология MirrorBit была разработала Spansion специально для клиентов, требующих максимального соотношения цена/производительность по всему спектру приложений флэш-памяти. В результате производители устройств все чаще заменяют микросхемы с плавающим затвором и однобитовыми или многоуровневыми ячейками в мобильных телефонах высшего класса, КПК, цифровых камерах, серверах, телеприставках, принтерах, сетевом и телекоммуникационном оборудовании, игровых системах и навигационных устройствах.

Беспроводные устройства Spansion линии GL с напряжением питания 1,8 В и 3 В применяются для хранения данных и выполнения приложений в мобильных телефонах начального, среднего и высшего классов. Беспроводные устройства линии PL с напряжением питания 3 В также используются в многочисленных мобильных телефонах, начиная от самых простых моделей и заканчивая мощными многофункциональными телефонами с цветными дисплеями высокого разрешения.

Беспроводные устройства Spansion линии WS оптимизированы для мобильных телефонов высшего класса, поддерживающих полифонические мелодии, оснащенных цветными дисплеями и фотокамерами высокого разрешения, а также большим объемом внутренней памяти для хранения мультимедийной информации, видеоклипов и фотографий. В линию WS входят высокопроизводительные микросхемы на 1,8 В с пакетным доступом, поддержкой одновременного чтения и записи и улучшенной защитой секторов. Емкость этих устройств составляет от 64 до 256 Мбит; они могут применяться для хранения данных и выполнения приложений.

В устройствах Spansion линии GL-N большая емкость сочетается с высокой пропускной способностью и безопасностью. Они отлично подходят для нового поколения устройств домашней и автомобильной электроники, средств связи и сетевого оборудования, а также для мобильных устройств. В линии GL-N выпускаются 512-, 256- и 128-Мбит модули, образующие единую платформу интеграции флэш-памяти в самых различных устройствах. Совместимость по ПО, посадочным местам и физическому интерфейсу сокращает затраты на разработку и модернизацию продукции, поскольку для перехода на более емкие модули не нужно менять печатные платы и адаптировать ПО.

Компании Spansion LLC и Taiwan Semiconductor Manufacturing Company (TSMC, http://www.tsmc.com) заключили соглашение, позволяющее начать массовое производство микросхем на основе 110-нм технологии Spansion MirrorBit. По условиям соглашения TSMC предоставляет производственные мощности для изготовления продукции Spansion - беспроводных устройств серий GL, PL и WS, а также интегрированных устройств серии GL. TSMC внедряет на своих предприятиях 110-нм производственный процесс Spansion специально для изготовления ее продукции. Первоначально технология Spansion MirrorBit 110 нм применяется на 200-мм кремниевых пластинах.

В начале осени прошлого года Spansion объявила о предоставлении клиентам образцов флэш-памяти формата Package-on-Package (PoP) для миниатюрных и в то же время многофункциональных мобильных телефонов, КПК, цифровых камер и MP3-плееров. Новое решение Spansion формата PoP представляет собой компактный модуль памяти со встроенным контроллером, отличающийся малым количеством контактов, простотой интеграции и высокой производительностью. Эти устройства в первую очередь оценили производители мобильных телефонов, которые смогли расширить набор функций новых моделей без увеличения их массы и размера.

Высота новых устройств PoP Spansion, состоящих из модуля памяти и контроллера в вертикальной компоновке, составляет всего 1,4 мм. Устройства PoP отличаются высокой гибкостью - на совмещение любого модуля памяти с любым контроллером требуется буквально несколько недель. Решения PoP позволяют подобрать идеальное сочетание модуля памяти и контроллера для каждой задачи, а упрощенная процедура тестирования означает дополнительную экономию средств. Spansion придерживается системного подхода при разработке и выпуске флэш-памяти и стандартизации устройств PoP, принимает активное участие в работе ассоциации JEDEC и возглавляет группу JC11.2, отвечающую за рекомендации по разработке устройств PoP. Кроме того, компания прилагает максимум усилий к распространению устройств PoP, а также тесно сотрудничает с производителями наборов микросхем для обеспечения совместимости между ними.

В прошлом году производственные мощности Spansion были рассчитаны на выпуск 8-кристальных интегрированных модулей со 128-контактной основой формата 12х12 мм с шагом в 0,65 мм. За счет малой длины дорожек и низкой электрической емкости шины в устройствах PoP удается обойти ограничения на чистоту сигналов и точность синхронизации, характерную для памяти DDR с рабочей частотой 133 МГц. Архитектура, выбранная Spansion, позволяет обойтись меньшим количеством контактов и отказаться от передачи данных между модулем памяти и контроллером по поверхности печатной платы, что значительно упрощает структуру интегрированного устройства.

В устройствах Spansion PoP также применяется технология MirrorBit. Архитектура ORNAND открывает новые возможности для развития этой технологии. Она разрабатывается специально для беспроводных устройств и вспомогательных процессоров, которым требуются большие объемы данных и контроллеры, оптимизированные под выполнение конкретных задач.

Первые образцы одномодульных гигабитных устройств флэш-памяти для встроенных систем появились уже в октябре прошлого года. Гигабитные модули MirrorBit GL стали первыми устройствами, изготовленными по 90-нм технологии MirrorBit, и на момент выпуска обладали рекордной удельной емкостью среди одномодульных устройств флэш-памяти NOR. Они могут применяться для хранения данных и исполняемого кода в разнообразных встроенных системах, таких, как автомобильные системы навигации, устройства связи, игровые устройства и промышленные роботы.

Гигабитные устройства MirrorBit GL входят в ту же линию продукции, что и единственные в мире 512-Мбит модули флэш-памяти NOR. Перевод технологии MirrorBit на 90-нм производственный процесс и удвоение плотности флэш-памяти NOR позволили Spansion снизить стоимость компонентов, поскольку теперь разработчики встроенных систем могут обойтись одним одномодульным устройством вместо нескольких независимых устройств или дорогих многослойных устройств с несколькими модулями низкой емкости. Благодаря тому, что новинка продолжила существующую линию устройств, клиентам Spansion очень просто переходить на новые модули, это не требует никаких изменений в архитектуре уже разработанных встроенных систем.

Гигабитные модули Spansion MirrorBit относятся к семейству Spansion GL, в которое входят модули емкостью от 16 до 512 Мбит. Выпуском гигабитного устройства компания Spansion расширила ассортимент своей продукции от емкости в 1 Мбит до 1 Гбит. Вся новая продукция совместима с модулями предыдущих поколений (вплоть до 2 Мбит) на уровне программного интерфейса, аппаратного интерфейса и посадочных мест, что позволяет устанавливать их в старые платы. Гигабитные модули MirrorBit GL на уровне аппаратного интерфейса и посадочного места совместимы со всеми устройствами MirrorBit GL-M (230-нм техпроцесс), MirrorBit GL-A (200-нм) и MirrorBit GL-N (110-нм), а также с более старыми устройствами Fujitsu и AMD LV вплоть до тех, что производились по процессу 320 нм. Физическое исполнение модулей отвечает требованиям стандартов JEDEC. Рабочее напряжение гигабитных модулей MirrorBit GL составляет 3 В, скорость произвольного доступа при чтении - 110 нс, скорость последовательного доступа при чтении - 25 нс, емкость страничного буфера - 8 слов.

Гигабитные модули MirrorBit GL позволяют либо выполнять код непосредственно с флэш-памяти, либо копировать его с высокой скоростью в оперативную память. Они основаны на архитектуре NOR, которая гарантирует отсутствие плохих секторов, устраняет необходимость в проверке четности ECC и поддерживает стандартный параллельный интерфейс. Эти модули позволяют значительно упростить структуру и снизить стоимость встроенных систем. Для приложений, предъявляющих особые требования к защите, немаловажно, что в мегабитных модулях MirrorBit GL поддерживается технология улучшенной защиты секторов ASP (Advanced Sector Protection). Технология ASP позволяет разработчикам надежно защитить программные алгоритмы и параметры 64-разрядным ключом. Защита может устанавливаться индивидуально для каждого сектора с кодом или данными. Помимо этого, модулям можно присваивать электронные серийные номера (ESN). Номера ESN удобны для удаленной идентификации устройств, управления уровнем обслуживания и ведения журнала доступа для последующей тарификации. Эти средства защиты помогают обезопасить устройства от вредоносного кода и вирусов, а также от несанкционированного доступа.

Флэш-память Samsung

Занимая лидирующие позиции на рынке флэш-памяти NAND с 2002 г., Samsung Electronics (http://www.samsung.com) продолжает наращивать инвестиции в данное направление. Основная цель этих капиталовложений - ежегодное двукратное увеличение емкости носителей информации, что позволит и в дальнейшем сохранять лидирующие позиции и стимулировать рынок в направлении увеличения объемов памяти и предложения более приемлемых цен на продукты. В корпорации ожидают, что в дальнейшем флэш-память типа NAND будет применяться не только в цифровых фотокамерах, MP3-плеерах и 3G-телефонах, но и в других мобильных продуктах и цифровой потребительской электронике. Это обусловлено тем, что флэш-память данного типа признается наиболее надежным носителем для хранения данных повышенной емкости и отвечает самым широким потребительским запросам. Технология OneNAND объединяет в одной микросхеме ячейки флэш-памяти NAND, высокоскоростной SRAM-буфер и логический интерфейс, причем это единственный тип NAND-памяти, разработанный для сопряжения с флэш-памятью типа NOR. Вдобавок такая конструкция минимизирует потери хранящихся данных при отключении питания.

Кристаллы флэш-памяти нового типа, отличающиеся высокими показателями скорости чтения при расширенных возможностях хранения данных, Samsung Electronics выпустила еще в ноябре 2004 г. Гигабитная микросхема OneNAND Flash, производимая по 90-нм технологии, сочетала в себе свойства основных архитектур флэш-памяти - NAND и NOR. От памяти NOR новый тип унаследовал высокую скорость чтения и записи данных. Кроме того, OneNAND позволяет хранить и быстро копировать в оперативную память исполняемый код, что характерно для микросхем NAND. Напомним, что сходный принцип положен в основу кристаллов ORNAND, разработанных компанией Spansion. Samsung Electronics ориентировала кристаллы OneNAND на смартфоны, снабженные встроенными фотокамерами и способные исполнять приложения.

Весной прошлого года корпорация объявила о создании модуля флэш-памяти OneNAND объемом 4 Гбит, предназначенного для мультимедийных телефонов. Помимо высокой емкости, он отличается ультракомпактными размерами, высокой производительностью и низким энергопотреблением. Новый кристалл OneNAND имеет напряжение питания 1,8 В, и его энергопотребление по сравнению c памятью других типов, работающей при напряжении 3,3 В, почти вдвое ниже. Размеры нового чипа - 11х13х1,4 мм - существенно меньше, чем у конкурирующих устройств мобильной памяти той же емкости. Эти микросхемы отличаются высокой скоростью чтения - 108 Мбайт/с, что в четыре раза выше, чем у обычной NAND-памяти, а также скоростью записи - 10 Мбайт/с, что в 60 раз превосходит скорость записи флэш-памяти типа NOR. Для примера: на 4-Гбит модуле можно хранить 250 снимков, полученных с помощью 5-Мпиксел камеры сотового телефона, или более 120 музыкальных файлов.

С технической точки зрения 4-Гбит память OneNAND представляла собой четыре кристалла памяти OneNAND объемом 1 Гбит каждый, собранные в четырехслойном пакете (Quad Die Package). Кристаллы производились с использованием 90-нм техпроцесса, запущенного еще в ноябре 2004 г. Примерно в то же время южнокорейская корпорация сообщила о начале эксплуатации новой линии по производству микросхем флэш-памяти NAND. Мощности Line 14, запущенной на месяц раньше запланированного срока, предназначались для изготовления 4-Гбит модулей по нормам 70-нм технологии, а также 2-Гбит модулей по 90-нм техпроцессу.

По утверждениям представителей Samsung, размер ячейки микросхем памяти, произведенных по 70-нм технологии, составляет всего 0,025 мм2. При этом скорость последовательной записи примерно на 50% выше аналогичного показателя для микросхем емкостью 2 Гбит, изготовленных по 90-нм техпроцессу. Таким образом, теоретически новые 4-Гбит кристаллы флэш-памяти NAND могут использоваться для записи видео высокого разрешения в режиме реального времени. Новая линия на начальном этапе позволяла выпускать порядка 4 тыс. пластин в месяц, а к концу прошлого года ежемесячный объем производства составлял 15 тыс. пластин. Согласно данным Gartner Dataquest, доля 4-Гбит микросхем NAND к концу года составила около 30% от общего объема рынка NAND-памяти, оцениваемого в 8 млрд долл. Примечательно, что Samsung ежегодно удваивает емкость NAND-кристаллов начиная с 1999 г.

ПО XSR (eXtended Sector Remapper), разработанное в Samsung Electronics, оптимизирует производительность устройств флэш-памяти OneNAND для телефонов 3G, карманных компьютеров, переносных игровых систем и цифровых камер. Разработано пять различных программ, каждая из которых приспособлена к своей операционной среде, три из них созданы на базе Samsung XSR. PocketStore II оптимизирует использование OneNAND в мобильной среде Microsoft, Unistore используется на платформе Symbian, а TFS4 (Transactional File System 4) разработана для ОС реального времени (Real Time Operating Systems). Кроме того, Samsung предлагает программу RFS (Robust File System) для ОС Linux, а также версию TFS-4-Light для МР3-плееров. За счет использования Samsung XSR скорость чтения данных достигает 30 Мбайт/с, а скорость записи - 9 Мбайт/с. Это ПО упрощает процесс разработки высокопроизводительных, недорогих и экономичных портативных мультимедиа-систем.

Летом прошлого года Samsung Electronics завершила разработку первого твердотельного жесткого диска (Solid State Disk, SSD), созданного на основе флэш-памяти типа NAND, для применения в персональных и мобильных ПК (рис. 5). Как известно, твердотельные диски на базе флэш-памяти NAND - это носители информации, характеризующиеся низким энергопотреблением и малой массой и предназначенные для ноутбуков, субноутбуков и планшетных ПК (Tablet PC). Используя собственные микросхемы флэш-памяти NAND емкостью 8 Гбит - максимальной плотности из выпускаемых на тот момент полупроводниковой промышленностью в мире, Samsung Electronics получила возможность создавать твердотельные жесткие диски емкостью до 16 Гбайт (для сравнения: наиболее распространенная емкость шпиндельных жестких дисков в ноутбуках равна 40 Гбайт).

Энергопотребление SSD составляет менее 5% от показателей традиционных жестких дисков, что увеличивает более чем на 10% время автономной работы портативных ПК. Необходимо также отметить, что SSD на базе флэш-памяти NAND примерно вдвое легче обычных жестких дисков. Производительность SSD превосходит аналогичные показатели шпиндельных жестких дисков сопоставимого размера более чем на 150%. Скорость чтения с такого диска составляет 57 Мбайт/с, а скорость записи на него - 32 Мбайт/с.

В связи с отсутствием движущихся элементов твердотельные жесткие диски Samsung характеризуются минимальным уровнем шума и тепловыделения. Более того, SSD обеспечивают сверхвысокую надежность хранения данных и отлично зарекомендовали себя в условиях экстремальных температур и влажности, что позволяет применять такие диски в промышленности и военной технике.

Для совместимости твердотельные жесткие диски исполнены в корпусах, внешне напоминающих обычные жесткие диски. Samsung выпустила полную линейку твердотельных дисков: SSD формата 2,5 дюйма имели 16 кристаллов флэш-памяти NAND емкостью 4 Гбит или 8 Гбит и обеспечивали дисковое пространство 8 Гбайт или 16 Гбайт соответственно. 1,8-дюйм диски также были выпущены в двух модификациях - на 4 и 8 Гбайт. Твердотельные жесткие диски открыли новые ниши в индустрии хранения данных, особенно для мобильных устройств, не требующих высокой емкости.

Кристаллы NAND флэш-памяти емкостью 4 Гбит Samsung Electronics впервые анонсировала в сентябре 2003 г. Следуя принятой модели роста емкости модулей памяти (двукратное увеличение емкости каждые 12 месяцев), представленной доктором Чанг Гю Хвангом, президентом и исполнительным директором Samsung Electronics Semiconductor, последовательно выпускались пять поколений флэш-памяти NAND: 256 Мбит в 1999 г., 512 Мбит в 2000-м, 1 Гбит в 2001-м, 2 Гбит в 2002-м, 4 Гбит в 2003-м, 8 Гбит в 2004-м и 16 Гбит в 2005 г. Использование 70-нм технологического процесса при производстве 4-Гбит микросхем флэш-памяти типа NAND позволяет корпорации производить самые маленькие по размеру ячейки памяти - площадью 0,025 мкм2. Своим успешным развитием 70-нм технологический процесс обязан применению литографического оборудования, которое использует коротковолновые источники света на основе фторида аргона (ArF), позволяющие добиться необходимой точности размещения элементов на кристалле.

Микросхемы, произведенные по 70-нм технологии, демонстрируют высокие скоростные характеристики: скорость записи у них составляет 16 Мбайт/с, на 50% лучше, чем у современных 2-Гбит микросхем, выполненных по 90-нм технологии, что позволяет применять данный тип памяти для записи в реальном времени видеосигнала высокой четкости. Samsung Electronics также анонсировала выпуск первой 300-мм кремниевой пластины на новой технологической линии N14 на месяц раньше запланированного срока. Линия предназначена для выпуска 4-Гбит (70-нм технология) и 2-Гбит (90-нм) кристаллов флэш-памяти типа NAND. В конце 2005 г. корпорация опробовала технологический процесс при нормах 50 нм для производства 16-Гбит кристаллов NAND флэш-памяти; массовый выпуск этих модулей намечен на вторую половину текущего года.

Флэш-память Intel

Флэш-память NOR, разработанная корпорацией Intel в 1988 г., представляла собой энергонезависимую перезаписываемую микросхему памяти, нашедшую широкое применение в мобильных телефонах. В 2003 г. Intel представила новую технологию флэш-памяти, полное название которой звучало как StrataFlash Wireless Memory System. Она позволяла уменьшить объем модулей памяти, используемых в КПК и сотовых телефонах, а также снизить энергопотребление и стоимость флэш-памяти в упомянутых устройствах. В технологии StrataFlash были использованы элементы двух разных типов флэш-памяти: NAND и NOR. Как известно, технология NAND предназначается для хранения данных на внешних флэш-картах, а NOR подходит для хранения небольших программ для мобильных устройств. Доступ к флэш-памяти NOR осуществляется без проверки ошибок, поскольку в этом нет необходимости. Флэш-память NAND не имеет такой надежности, как NOR-память, но она дешевле в производстве, а, кроме того, чтение и запись данных в память NAND происходит намного быстрее, чем в NOR. Это быстродействие дополнительно увеличивается за счет использования в комплекте с этой памятью модулей ОЗУ. В StrataFlash инженеры Intel объединили два типа флэш-памяти, оптимизировав ее и для хранения данных, и для записи программ. Первый модуль памяти StrataFlash состоял из нескольких кристаллов, часть из которых была модулями ОЗУ, а другая представляла собой непосредственно флэш-память.

В начале прошлого года были представлены первые образцы продукции Sibley, предназначенной для рынка мобильных телефонов. Отметим, что, согласно прогнозам iSuppli, годовой объем продаж 3G-телефонов к 2008 г. достигнет 240 млн штук при ежегодном росте в 87%. Sibley - это кодовое наименование первого многоуровневого (Multi-Level Cell, MLC) модуля флэш-памяти NOR, который производится по 90-нм производственной технологии Intel. Семейство Sibley призвано обеспечивать высокую скорость считывания с кодированием "ожидания нуля" на частоте 108 МГц. Кроме того, скорость записи у такой памяти достигает 500 Кбайт/с, что важно для сохранения мультимедийных изображений в современных мобильных телефонах. Новое семейство продукции позволяет увеличить плотность флэш-памяти NOR благодаря использованию единого модуля емкостью 512 Мбайт. Обеспечивается поддержка различных интерфейсов памяти, что дает производителям мобильных телефонов большой уровень гибкости при проектировании.

Четвертое поколение флэш-памяти Intel с многоуровневыми ячейками (рис. 6) нацелено на ОЕМ-компании, работающие в области интегрированных решений, которым требуется высокая производительность и компактность устройств флэш-памяти. Это сочетание необходимо для самых разных платформ - от цифровых камер и бытовой электроники до сетевых маршрутизаторов, коммутаторов и КПК.

Рис. 6. Архитектура многоуровневой ячейки.

Осенью прошлого года Intel объявила о начале массовых поставок первых модулей MLC флэш-памяти NOR, производимых по 90-нм технологии. Новые модули Intel StrataFlash Cellular Memory (M18) обладают более высокой производительностью, более компактны и потребляют меньше энергии, чем предыдущие модули, производимые по 130-нм технологии, что полнее удовлетворяет потребности разработчиков мобильных телефонов, оснащенных камерами и цветными экранами, поддерживающих Интернет-браузеры, воспроизведение видео и т. д.

Модули M18 отличаются очень высокой скоростью чтения, благодаря чему могут использовать шину, работающую с той же частотой, что и наборы микросхем для мобильных телефонов следующего поколения (до 133 МГц). Это ускоряет выполнение пользовательских приложений, поскольку взаимодействие набора микросхем и памяти происходит быстрее, чем в модулях, выпускаемых по 130-нм технологии. Благодаря скорости записи, достигающей 0,5 Мбайт/с, модули M18 поддерживают трехмегапиксельные камеры и воспроизведение видео в формате MPEG4. OEM-производителям эти модули выгодны тем, что их программирование в заводских условиях выполняется в три раза быстрее, чем модулей, производимых по 130-нм технологии, что способствует снижению производственных расходов. На программирование модулей M18 и стирание записанных в них данных расходуется соответственно в три и два раза меньше энергии по сравнению с модулями предыдущего поколения, к тому же они поддерживают новый режим работы Deep Power Down, который дополнительно продлевает срок работы устройства без перезарядки аккумулятора. Кроме того, модули M18 отличаются повышенной плотностью монтажа: Intel предлагает микросхемы памяти объемом 256 и 512 Мбит, а также стандартные стековые решения объемом до 1 Гбит. Стандартные стеки Intel объединяют технологии NOR и RAM и поддержку нескольких архитектур шин, позволяя OEM-производителям быстрее разрабатывать новые устройства.

Чтобы помочь разработчикам ускорить интеграцию новых карманных устройств, корпорация Intel бесплатно предоставляет им ПО Intel Flash Data Integrator (Intel FDI) следующего поколения. ПО Intel FDI v7.1 обеспечивает открытую архитектуру, облегчающую интеграцию файловой системы флэш-памяти с ОС реального времени, и три новые функции, расширяющие возможности разработчиков: это Mountable USB, поддержка нескольких томов и поддержка буферов RAM.

Отметим также, что Intel первой в индустрии наладила выпуск многоуровневых микросхем флэш-памяти класса NOR емкостью 1 Гбит для мобильных устройств, используя передовую 65-нм производственную технологию.

Intel и Micron объединяют усилия

Корпорации Intel и Micron Technology (http://www.micron.com) создали новую компанию для производства флэш-памяти типа NAND. Объединяя опыт и производственные технологии, Intel и Micron рассчитывают усилить свою конкурентоспособность на прибыльном рынке флэш-памяти NAND и уже получили заказ от первого крупного клиента, корпорации Apple Computer. Модули флэш-памяти типа NAND по-прежнему пользуются большим спросом, поскольку они применяются в самых разных электронных устройствах, в том числе в музыкальных плеерах и цифровых камерах.

Новая компания, получившая название IM Flash Technologies, будет выпускать для Intel и Micron флэш-память, предназначенную для рынков бытовой электроники, сменных устройств хранения и карманных средств связи. В создание нового совместного предприятия Intel и Micron вложили примерно по 1,2 млрд долл., причем в ближайшие три года компании планируют инвестировать в нее еще столько же. Создание IM Flash планируется завершить к концу года; Intel и Micron уже заключили отдельные долговременные соглашения на поставку для корпорации Apple значительных объемов флэш-памяти типа NAND, которые будут выпущены новой компанией.

Как сообщается, 51% акций IM Flash будут принадлежать Micron, а 49% - Intel. Первые партии модулей флэш-памяти NAND будут выпущены на фабриках в Бойсе (шт. Айдахо), Манассасе (шт. Вирджиния) и Лехи (шт. Юта).

Потребность в энергонезависимой флэш-памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе флэш-памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в флэш-памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, флэш-память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR и NAND. Структура NOR (рис.1) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис.2) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

рис.1 Структура NOR рис.2 Структура NAND

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR. Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-флэш ниже, чем в других технологиях флэш-памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Основные отличия в параметрах флэш-памяти, изготовленной по различным технологиям, приведены в таблице 1.

Таблица 1. Сравнительные характеристики модулей памяти на основе ячеек NAND и NOR

Параметр NAND NOR
Емкость ~ 1 Гбит (2 кристалла в корпусе) ~ 128 Мбит
Напряжение питания 2.7 – 3.6 В 2.3 – 3.6 В
Ввод/вывод х8 / х16 х8 / х16
Время доступа 50 нС (цикл последовательного доступа)
25 мкС (случайный доступ)
70 нС (30 пФ, 2.3 В)
65 нС (30 пФ, 2.7 В)
Скорость программирования (типовая) -
200 мкС / 512 байт
8 мкС / байт
4.1 мС / 512 байт
Скорость стирания (типовая) 2 мС / блок (16 кБ) 700 мС / блок
Совокупная скорость
программирования и стирания (типовая)
33.6 мС / 64 кБ 1.23 сек / блок (основной: 64 кБ)

Ведущим лидером в производстве NAND-флэш микросхем является фирма Hynix. Она производит несколько разновидностей микросхем памяти, различающихся по следующим ключевым параметрам:

  • емкость (256 Мбит, 512 Мбит и 1 Гбит);
  • ширина шины, 8 или 16 бит (х8, х16);
  • напряжение питания: от 2.7 до 3.6 В (3.3 В устройства) или от 1.7 до 1.95 В (1.8 В устройства);
  • размер страницы: в х8 устройствах (512 + 16 запасных) байт, в 16х – (256 + 8 запасных) слов;
  • размер блока: в х8 устройствах (16 К + 512 запасных) байт, в 16х – (8 К + 256 запасных) слов;
  • время доступа: случайный доступ 12 мкС, последовательный 50 нС;
  • время программирования страницы 200 мкС;

Все микросхемы NAND-флэш от Hynix характеризуются типичным временем стирания блока 2 мС, имеют аппаратную защиту данных при переходных процессах по питанию и позволяют выполнять 100000 циклов записи/стирания. Гарантированное время сохранности данных составляет 10 лет. Важной особенностью микросхем памяти Hynix является их повыводная совместимость вне зависимости от емкости. Это позволяет очень легко улучшать потребительские характеристики конечного изделия. В таблице 2 приведены базовые параметры всех микросхем NAND-флэш фирмы Hynix.

Таблица 2. Сравнительный перечень микросхем NAND-флэш фирмы Hynix

Об"ем Тип Организаця Напряжение
питания
Диапазон
рабочих
температур*
Сккорость
(ns)
Корпус
256Mbit 32Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
512Mbit 64Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
1Gb 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA

* - Диапазоны температур
C - Коммерческий диапазон рабочих температур 0...+70°C
E - Расширенный диапазон рабочих температур -25...+85°C
I - Индустриальный диапазон рабочих температур -40...+85°C

Более детально особенности микросхем памяти Hynix можно рассмотреть на примере кристаллов серии HY27xx(08/16)1G1M. На рис.3 показана внутренняя структура и назначение выводов этих приборов. Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Для увеличения жизненного цикла NAND-флэш устройств настоятельно рекомендуется применять код корректировки ошибок (ECC). Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.


Рис.3 Внутренняя организация микросхем NAND-флэш Hynix

Для оптимальной работы с дефектными блоками доступна команда «Copy Back». Если программирование какой-либо страницы оказалось неудачным, данные по этой команде могут быть записаны в другую страницу без их повторной отправки.

Микросхемы памяти Hynix доступны в следующих корпусах:

  • 48-TSOP1 (12x20x1.2 мм) – рис.4;
  • 48-WSOP1 (12х12х0.7 мм)
  • 63-FBGA (8.5х15х1.2 мм, 6х8 массив шаровых контактов, 0.8 мм шаг)


Рис.4 NAND-флэш Hynix

Массив памяти NAND-структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис.5). Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC), программных флагов и идентификаторов негодных блоков (Bad Block) основной области. В устройствах х8 страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В устройствах х16 страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.


Рис.5 Организация массива NAND-памяти

NAND-флэш устройства со страницами 528 байт / 264 слова могут содержать негодные блоки, в которых может быть одна и более неработоспособных ячеек, надежность которых не гарантируется. Помимо этого, дополнительные негодные блоки могут появиться в ходе эксплуатации изделия. Информация о плохих блоках записывается в кристалл перед отправкой. Работа с такими блоками выполняется по процедуре, детально описанной в справочном руководстве по микросхемам памяти Hynix.

При работе с микросхемами памяти выполняются три основных действия: чтение (рис.6), запись (рис.7) и стирание (рис.8).

Процедура чтения данных


Рис.6 Диаграмма процедуры чтения

Процедуры чтения данных из NAND-памяти могут быть трех типов: случайное чтение, постраничное чтение и последовательное построчное чтение. При случайном чтении для получения одной порции данных нужна отдельная команда.

Чтение страницы выполняется после доступа в режиме случайного чтения, при котором содержимое страницы переносится в буфер страницы. О завершении переноса информирует высокий уровень на выход «Чтение/занят». Данные могут быть считаны последовательно (от выбранного адреса столбца до последнего столбца) по импульсу сигнала на Read Enable (RE).

Режим последовательного построчного чтения активен, если на входе Chip Enable (CE) остается низкий уровень, а по входу Read Enable поступают импульсы после прочтения последнего столбца страницы. В этом случае следующая страница автоматически загружается в буфер страниц и операция чтения продолжается. Операция последовательного построчного чтения может использоваться только в пределах блока. Если блок изменяется, должна быть выполнена новая команда чтения.

Процедура записи данных


Рис.7 Диаграмма процедуры записи

Стандартной процедурой записи данных является постраничная запись. Главная область массива памяти программируется страницами, однако допустимо программирование части страницы с необходимым количеством байт (от 1 до 528) или слов (от 1 до 264). Максимальное число последовательных записей частей одной и той же страницы составляет не более одной в главной области и не более двух в резервной области. После превышения этих значений необходимо выполнить команду стирания блока перед любой последующей операцией программирования этой страницы. Каждая операция программирования состоит из пяти шагов:

  1. Один цикл на шине необходим для настройки команды записи страницы.
  2. Четыре шинных цикла требуются для передачи адреса.
  3. Выдача данных на шину (до 528 байт / 264 слов) и загрузка в буфер страниц.
  4. Один цикл на шине необходим для выдачи команды подтверждения для старта контроллера PER.
  5. Выполнение контроллером PER записи данных в массив.

Процедура стирания блока


Рис.8 Диаграмма процедуры стирания

Операция стирания выполняется за один раз над одним блоком. В результате её работы все биты в указанном блоке устанавливаются в «1». Все предыдущие данные оказываются утерянными. Операция стирания состоит из трех шагов (рис.8):

  1. Один цикл шины необходим для установки команды стирания блока.
  2. Только три цикла шины нужны для задания адреса блока. Первый цикл (A0-A7) не требуется, поскольку верны только адреса с А14 по А26 (старшие адреса), А9-А13 игнорируются.
  3. Один цикл шины необходим для выдачи команды подтверждения для старта контроллера PER.

Помимо Hynix микросхемы NAND-памяти выпускаются еще несколькими производителями, среди которых весьма большую номенклатуру и объем продаж изделий имеет компания Samsung. Она производит две базовые линейки микросхем памяти NAND Flash и One NAND™. Модули памяти семейства One NAND™ представляют собой одиночный кристалл памяти со стандартным интерфейсом NOR-флэш, основанный на массиве ячеек NAND-флэш.

Ассортимент выпускаемых компанией Samsung изделий более широк, чем у Hynix. Представлены модули емкостью от 4 Мбит до 8 Гбит, работающие в коммерческом и индустриальном температурных диапазонах. Доступны как 8-ми, так и 16-разрядные модификации на разные диапазоны питающих напряжений: 1,65…1,95 В или 2,7…3,6 В. Выпускаемые Samsung изделия имеют развитые аппаратные возможности защиты данных: защиту от записи для BootRAM, защитный режим для Flash-массива и защиту от случайной записи при включении и выключении.

В остальном устройство микросхем памяти Hynix и изделий семейства NAND Flash от Samsung практически идентично. В этой ситуации предпочтительным для потребителя вариантом является продукция того производителя, рыночная стоимость изделий которого наиболее приемлема.

Высокое быстродействие при считывании последовательных потоков данных предопределяет широкую сферу применимости NAND-флэш. Весьма популярным и перспективным рынком для памяти такого типа является рынок твердотельных накопителей для шины USB. В таблице 3 отражены возможности производимых в настоящее время микросхем NAND-флэш применительно к этой сфере. Помимо этого, наиболее выгодным оказывается использование такой памяти в MP3-плеерах, цифровых фотоаппаратах, компьютерах - наладонниках и в другом подобном оборудовании.

Таблица 3. Преимущества и недостатки использования NAND-флэш в твердотельных накопителях

Категория Содержимое
Возможности Преимущества Хранилище данных, которые могут быть переданы через USB
Малый размер, легкость создания портативных устройств
Нет ограничений в объеме памяти
Безопасное хранение данных, физически более надежное в сравнении в HDD
Поддержка функции «горячей» установки Plug&Play
Быстрая скорость передачи:
USB 1.1: максимум до 12 Мбод, USB 2.0: максимум 480 Мбод
Превосходная совместимость со стандартизованным USB интерфейсом
Возможность питания от USB порта (500 мА, 4,5…5,5 В)
Недостатки Необходимость в программном обеспечении в операционной системе хост-контроллера
Необходимость в использовании чипсета USB-хоста
Высокая стоимость в сравнении с HDD сравнимой емкости
Емкость продукта От 16 Мбит до 8 Гбит
Скорость передачи Запись До 13 Мб/с под USB 2.0 у карты CF от SanDisk
Чтение До 15 Мб/с под USB 2.0 у SanDisk
Применение ПК (настольные, переносные), DVC,PDA, сотовые телефоны и пр.
Ведущие производители, использующие флэш-память M-Systems, Lexar Media, SanDisk и др.
Ассоциации USB-IF (форум конструкторов USB), UTMA (ассоциация универсальной транспортабельной памяти)

Всем доброго дня!
Сегодняшняя статья положит начало новому, небольшому циклу статей, посвященному хранению информации, различным типам памяти, способам записывания/считывания информации и всему, что с этим связано 😉 И начнем мы с устройства хорошо нам всем знакомой Flash-памяти.

Что из себя вообще представляет Flash-память? Да просто обычная микросхема, ничем внешне не отличающаяся от любой другой. Поэтому может возникнуть резонный вопрос – а что там внутри и как вообще происходят процессы сохранения/считывания информации.

Итак, сердцем многих устройств памяти является полевой транзистор с плавающим затвором. Гениальнейшее изобретение 70-х годов 20-го века. Его отличие от обычных полевых транзисторов заключается в том, что между затвором и каналом, прямо в диэлектрике, расположен еще один проводник – который и называют плавающим затвором. Вот как все это выглядит:

На рисунке мы видим привычные нам сток-исток-затвор, а также расположенный в диэлектрике дополнительный проводник. Давайте разберемся как же это устройство работает.

Создадим между стоком и истоком разность потенциалов и подадим положительный потенциал на затвор. Что тогда произойдет? Правильно, через полевой транзистор, от стока к истоку потечет ток. Причем величина тока достаточно велика для того, чтобы “пробить” диэлектрик. В результате этого пробоя часть электронов попадет на плавающий затвор. Отрицательно заряженный плавающий затвор создает электрическое поле, которое начинает препятствовать протеканию тока в канале, в результате чего транзистор закрывается. И если отключить питание транзистора, электроны с плавающего затвора никуда не денутся и его заряд останется неизменным на долгие годы.

Но, конечно же, есть способ разрядить плавающий затвор. Для этого надо всего лишь подать на “основной” затвор напряжение противоположного знака, которое и “сгонит” все электроны, в результате чего плавающий затвор останется не заряженным.

Собственно так и происходит хранение информации – если на затворе есть отрицательный заряд, то такое состояние считается логической единицей, а если заряда нет – то это логический ноль.

С сохранением информации разобрались, осталось понять как нам считать информацию из транзистора с плавающим затвором. А все очень просто. При наличии заряда на плавающем затворе его электрическое поле препятствует протеканию тока стока. Допустим при отсутствии заряда мы могли подавать на “основной” затвор напряжение +5В, и при этом в цепи стока начинал протекать ток. При заряженном плавающем затворе такое напряжение не сможет заставить ток течь, поскольку электрическое поле плавающего затвора будет ему мешать. В этом случае ток потечет только при напряжении +10В (к примеру =)). Таким образом, мы получаем два пороговых значения напряжения. И, подав, к примеру +7.5В мы сможем по наличию или отсутствию тока стока сделать вывод о наличии или отсутствии заряда на плавающем затворе. Вот таким образом и происходит считывание сохраненной информации.

Как все это связано с Flash-памятью? А очень просто – полевой транзистор с плавающим затвором является минимальной ячейкой памяти, способной сохранить один бит информации. И любая микросхема памяти состоит из огромного количества расположенных определенным образом транзисторов. И вот теперь пришло время рассмотреть основные типы Flash-памяти. А именно я бы хотел обсудить NOR и NAND память.

Оба этих типа памяти построены на основе транзисторов с плавающим затвором, которым мы сегодня уделили немало времени) А принципиальное отличие состоит в том, каким образом соединены эти транзисторы.

Конструкция NOR использует двумерную таблицу проводников. Проводники называют линией битов и линией слов. Все стоки транзисторов подключаются к линии битов, а все затворы к линии слов. Рассмотрим пример для лучшего понимания.

Пусть нам надо считать информацию из какой-то конкретной ячейки. Эта ячейка, а точнее этот конкретный транзистор, подключен затвором на одну из линий слов, а стоком на одну из линий битов. Тогда мы просто подаем пороговое напряжение на линию слов, соответствующую затвору нашего транзистора и считываем его состояние как в том примере, что мы рассмотрели чуть выше для одной ячейки.

С NAND все несколько сложнее. Если возвращаться к аналогии с массивом, то ячейки NAND-памяти представляют собой трехмерный массив. То есть к каждой линии битов подключен не один, а сразу несколько транзисторов, что в итоге приводит к уменьшению количества проводников и увеличению компактности. Это как раз и является одним из главных преимуществ NAND-памяти. Но как же нам считать состояние определенного транзистора при такой структуре? Для понимания процесса рассмотрим схему:

Как видно из схемы, одна линия битов соответствует нескольким ячейкам. И важной особенностью является следующее: если хотя бы один из транзисторов закрыт, то на линии битов будет высокое напряжение. Вот смотрите:

Действительно, низкий уровень на линии битов будет только тогда, когда вся цепочка транзисторов окажется открытой (вспоминаем курс, посвященный полевым транзисторам 😉).

С этим вроде бы понятно, возвращаемся к нашему вопросу – как же считать состояние конкретного транзистора? А для этого недостаточно просто подать на линию слов (на затвор транзистора) пороговое напряжение и следить за сигналом на линии битов. Необходимо еще чтобы все остальные транзисторы были в открытом состоянии. А делается это так – на затвор нашего транзистора, состояние которого нам нужно считать, подается пороговое напряжение (как и в случае с NOR-памятью), а на затворы всех остальных транзисторов в этой цепочке подается повышенное напряжение, такое чтобы независимо от состояния плавающего затвора транзистор открылся. И тогда считав сигнал с линии битов мы узнаем в каком состоянии интересующий нас транзистор (ведь все остальные абсолютно точно открыты). Вот и все)

Такая вот получилась статейка сегодня) Разобрались мы с принципом работы и основными типами Flash, а также с устройством и принципом работы NAND и NOR-памяти. Надеюсь, что статья окажется полезной и понятной, до скорых встреч!

Носители, использующие флэш-память, составляют самый многочисленный класс портативных носителей цифровой информации и применяются в подавляющем большинстве современных цифровых устройств. Различные типы карт флэш-памяти все чаще используются в цифровых камерах, карманных компьютерах, аудиоплеерах, мобильных телефонах и других портативных электронных системах.

спользование чипов флэш-памяти позволяет создавать миниатюрные и очень легкие энергонезависимые сменные карты памяти, обладающие к тому же низким энергопотреблением. Важным достоинством карт на основе флэш-памяти является также их высочайшая надежность, обусловленная отсутствием движущихся частей, что особенно критично в случае внешних механических воздействий: ударов, вибраций и т.п.

Основные недостатки таких носителей — довольно большая цена самих карт флэш-памяти и высокая удельная стоимость хранимых на них данных, хотя в настоящее время наблюдается тенденция к значительному снижению цен на сменные карты флэш-памяти.

Самыми распространенными типами флэш-карт сегодня являются CompactFlash (CF), SmartMedia (SM), Securе Digital (SD), MultiMediaCard (MMC) и Memory Stick (MS), которые отличаются друг от друга интерфейсами, габаритами, скоростью чтения/записи и максимально возможной емкостью.

Впрочем, несмотря на разнообразие стандартов, выбор у пользователя не слишком велик. А точнее, этого самого выбора пользователю никто и не предлагает. Если взять такой сегмент рынка, как цифровые фотокамеры, то каждая камера рассчитана на определенный формат флэш-карт и нередко именно тип используемой флэш-памяти влияет на конечный выбор в пользу той или иной камеры.

На физическом уровне у флэш-памяти различных стандартов много общего, и в первую очередь это архитектура массива памяти и устройство самой ячейки памяти. Поэтому, прежде чем переходить к рассмотрению различных типов карт флэш-памяти, остановимся на базовых аспектах ее архитектуры.

Устройство ячейки флэш-памяти

ак известно, естественной для компьютера арифметикой является двоичная логика, когда вся информация кодируется с помощью логических нулей и единиц — информационных битов. С позиции электроники двоичной логике соответствует два дискретных состояния сигнала, одному из которых приписывается значение логического нуля, а второму — логической единицы. Соответственно и память, используемая в цифровой электронике, представляет собой организованное хранилище логических нулей и единиц. В простейшем случае каждая элементарная ячейка памяти хранит один бит информации, то есть либо 0, либо 1. Известные типы памяти различаются между собой лишь конструктивными особенностями элементарной ячейки памяти и принципами организации массива этих ячеек.

Рассмотрим для примера хорошо известную оперативную память с произвольным доступом, именуемую также RAM-памятью (Random Access Memory). По принципам действия RAM-память можно разделить на динамическую и статическую.

В статической памяти ячейки построены на различных вариантах триггеров — на транзисторных схемах с двумя устойчивыми состояниями. После записи бита в такую ячейку она может находиться в одном из этих состояний и сохранять записанный бит как угодно долго: необходимо только наличие питания. Отсюда и название памяти — статическая, то есть пребывающая в неизменном состоянии. Достоинством статической памяти является ее быстродействие, а недостатками — высокое энергопотребление и низкая удельная плотность данных, поскольку одна триггерная ячейка состоит из нескольких транзисторов и, следовательно, занимает довольно много места на кристалле.

В динамической памяти элементарная ячейка представляет собой конденсатор, способный в течение короткого промежутка времени сохранять электрический заряд, наличие которого можно ассоциировать с информационным битом. Проще говоря, при записи логической единицы в ячейку памяти конденсатор заряжается, при записи нуля — разряжается. При считывании данных конденсатор разряжается через схему считывания, и если заряд конденсатора был ненулевым, то на выходе схемы считывания устанавливается единичное значение. Кроме того, поскольку при считывании конденсатор разряжается, то его необходимо зарядить до прежнего значения. Поэтому процесс считывания сопровождается подзарядкой конденсаторов (регенерацией заряда). Если в течение длительного времени обращения к ячейке не происходит, то постепенно за счет токов утечки конденсатор разряжается и информация теряется. В связи с этим память на основе массива конденсаторов требует периодического подзаряда конденсаторов, поэтому ее и называют динамической. Для компенсации утечки заряда применяется регенерация, основанная на циклическом обращении к ячейкам памяти, восстанавливающим прежний заряд конденсатора.

И статическая, и динамическая RAM-память представляет собой энергозависимую память, которая способна сохранять информационные биты только при наличии внешнего питания. Соответственно при отключении питания вся информация теряется.

Принципиальное отличие флэш-памяти от RAM-памяти заключается в том, что это энергонезависимая память, способная в течение неограниченного времени сохранять информацию при отсутствии внешнего питания.

В принципе, существует несколько типов энергонезависимой памяти, и в этом смысле флэш-память — лишь одна из ее разновидностей.

Архитектура ПЗУ-памяти

Простейшим примером энергонезависимой памяти является ROM (Read-Only Memory), известная также как ПЗУ (постоянное запоминающее устройство). В такой памяти массив ячеек представляет собой набор проводников, некоторое из которых остаются целыми, а остальные разрушаются. Данные проводники, выполняющие роль элементарных переключателей, организуются в матрицу путем подсоединения к линиям столбцов и строк (рис. 1). Замкнутому состоянию проводника можно присвоить значение логического нуля, а разомкнутому — логической единицы. Если теперь измерить напряжение между одной из линий столбцов и строк (то есть получить доступ к определенной ячейке памяти), то его высокое значение (разомкнутое состояние проводника) соответствует логической единице, а нулевое (замкнутое состояние проводника) — логическому нулю.

Основным недостатком ПЗУ является невозможность обновлять содержимое ячеек памяти, то есть записывать информацию. Когда-то такая память использовалась для хранения BIOS, однако сегодня этот тип памяти уже не применяется.

Другой тип энергонезависимой памяти — перезаписываемое ПЗУ (ППЗУ) или EPROM (Erasable Programmable Read-Only Memory). Такая память может быть перезаписана только с помощью специальных программаторов. В настоящее время из-за сложности процесса перезаписи на смену ППЗУ приходит флэш-память (Flash Memory).

Сейчас уже довольно сложно определить происхождение термина «flash». В буквальном переводе с английского flash — это вспышка, молния. Возможно, таким названием разработчики хотели подчеркнуть, что данная энергонезависимая память позволяет перезаписывать информацию со скоростью молнии. В любом случае название «flash» прочно закрепилось за этим типом памяти, хотя и не имеет никакого отношения ни к архитектуре памяти, ни к технологиям ее производства.

Структура CMOS-транзистора

Между флэш-памятью и динамической RAM-памятью, равно как и ROM-памятью, есть много общего. Принципиальное различие заключается прежде всего в строении самой элементарной ячейки. Если в динамической памяти элементарной ячейкой является конденсатор, то во флэш-памяти роль ячейки памяти выполняет CMOS-транзистор особой архитектуры. И если в обычном CMOS-транзисторе имеется три электрода (сток, исток и затвор), то во флэш-транзисторе (в простейшем случае) добавляется еще один затвор, называемый плавающим.

Обычный CMOS-транзистор может находиться в двух состояниях: открытом и закрытом. Рассмотрим принцип действия обычного транзистора на примере n-p-n-транзистора (рис. 2). В таком транзисторе области стока и истока имеют электронную проводимость (n-области), а область затвора — дырочную проводимость (p-область). Сам транзистор выполнен в полупроводнике p-типа с дырочной проводимостью. Естественно, что за счет диффузии дырок из p-области в n-область и обратной диффузии электронов из n-области в p-область на границах переходов p- и n-областей формируются обедненные слои (слои, в которых отсутствуют основные носители зарядов), препятствующие протеканию тока. В обычном положении, то есть когда к затвору не прикладывается напряжение или подается отрицательный потенциал, транзистор находится в закрытом состоянии, то есть не способен проводить ток от истока к стоку. Ситуация не меняется, даже если приложить напряжение между стоком и истоком (при этом не принимаются во внимание токи утечки, вызванные движением под воздействием формируемых электрических полей неосновных носителей заряда, то есть дырок для n-области и электронов для p-области).

Однако если к затвору приложить положительный потенциал, то ситуация в корне изменится. Под воздействием электрического поля затвора дырки выталкиваются вглубь p-полупроводника, а электроны, наоборот, втягиваются в область под затвором, образуя обогащенный электронами канал между истоком и стоком. Если приложить к затвору положительное напряжение, эти электроны начинают двигаться от истока к стоку. При этом транзистор проводит ток — говорят, что транзистор открывается. Если напряжение с затвора снимается, электроны перестают втягиваться в область между истоком и стоком, проводящий канал разрушается и транзистор перестает пропускать ток, то есть закрывается.

В открытом состоянии напряжение между стоком и истоком близко к нулю, а в закрытом состоянии это напряжение может достигать высокого значения. Ситуация в данном случае аналогична ячейкам ПЗУ с замкнутыми и разомкнутыми проводниками. Закрытое состояние транзистора соответствует разомкнутому проводнику и может трактоваться как логическая единица, а открытое состояние транзистора соответствует замкнутому проводнику и может трактоваться как логический нуль. Проблема заключается лишь в том, что для задания транзистору того или иного состояния необходимо подавать управляющее напряжение на затвор, то есть данная структура позволяет записывать информацию (задавать значение нуля или единицы), но не дает возможности эту информацию сохранять, поскольку при отсутствии напряжения на затворе его состояние всегда становится закрытым. Поэтому нужно придумать такой способ, чтобы способность находиться в открытом или закрытом состоянии у транзистора сохранялась как угодно долго. Для этого в транзисторы, используемые во флэш-памяти, добавляется плавающий затвор, который служит для хранения заряда (электронов) в течение неограниченного времени.

Структура транзистора с плавающим затвором

Рассмотрим сначала ситуацию, когда на плавающем затворе нет электронов. В этом случае транзистор ведет себя подобно уже рассмотренному традиционному транзистору. При подаче на управляющий затвор положительного напряжения (инициализация ячейки памяти) он будет находиться в открытом состоянии, что соответствует логическому нулю (рис. 3). Если же на плавающем затворе помещен избыточный отрицательный заряд (электроны), то даже при подаче положительного напряжения на управляющий затвор он компенсирует создаваемое управляющим затвором электрическое поле и не дает образовываться каналу проводимости, то есть транзистор будет находиться в закрытом состоянии.

Рис. 3. Устройство транзистора с плавающим затвором и чтение содержимого ячейки памяти

Таким образом, наличие или отсутствие заряда на плавающем затворе однозначно определяет состояние транзистора (открыт или закрыт) при подаче одного и того же положительного напряжения на управляющий затвор. Если подачу напряжения на управляющий затвор трактовать как инициализацию ячейки памяти, то по напряжению между истоком и стоком можно судить о наличии или отсутствии заряда на плавающем затворе. Получается своеобразная элементарная ячейка памяти, способная сохранять один информационный бит. При этом важно, чтобы заряд на плавающем затворе (если он там имеется) мог сохраняться там как угодно долго как при инициализации ячейки памяти, так и при отсутствии напряжения на управляющем затворе. В этом случае ячейка памяти будет энергонезависимой. Осталось лишь придумать, каким образом на плавающий затвор помещать заряд (записывать содержимое ячейки памяти) и удалять его оттуда (стирать содержимое ячейки памяти) в случае необходимости.

Помещение заряда на плавающий затвор (процесс записи) реализуется либо методом инжекции горячих электронов (CHE-Channel Hot Electrons), либо методом туннелирования Фаулера-Нордхейма (аналогично тому, как это делается при удалении заряда — см. далее).

При использовании метода инжекции горячих электронов на сток и управляющий затвор подается высокое напряжение (рис. 4), чтобы придать электронам в канале энергию, достаточную для преодоления потенциального барьера, создаваемого тонким слоем диэлектрика, и туннелировать в область плавающего затвора (при чтении на управляющий затвор подается меньшее напряжение и эффекта туннелирования не наблюдается).

Рис. 4. Процесс записи и стирания информационного бита в транзистор с плавающим затвором

Для удаления заряда с плавающего затвора (процесс стирания ячейки памяти) на управляющий затвор подается высокое (порядка 9 В) отрицательное напряжение, а на область истока — положительное напряжение (рис. 4). Это приводит к тому, что электроны туннелируют из области плавающего затвора в область истока (квантовое туннелирование Фаулера-Нордхейма — Fowler-Nordheim, FN).

Рассмотренный нами транзистор с плавающим затвором может выступать в роли элементарной ячейки флэш-памяти. Однако однотранзисторные ячейки имеют ряд существенных недостатков, главный из которых — плохая масштабируемость. Дело в том, что при организации массива памяти каждая ячейка памяти (транзистор) подключается к двум перпендикулярным шинам: управляющие затворы — к шине, называемой линией слов, а стоки — к шине, называемой битовой линией (в дальнейшем данная организация будет рассмотрена на примере NOR-архитектуры). Вследствие наличия в схеме высокого напряжения при записи методом инжекции горячих электронов все линии — слов, битов и истоков — необходимо располагать на достаточно большом расстоянии друг от друга для обеспечения требуемого уровня изоляции, что, естественно, сказывается на ограничении объема флэш-памяти.

Другим недостатком однотранзисторной ячейки памяти является наличие эффекта избыточного удаления заряда с плавающего затвора, который не может компенсироваться процессом записи. В результате на плавающем затворе образуется положительный заряд и транзистор остается всегда в открытом состоянии.

Двухтранзисторная ячейка памяти

Для того чтобы избежать недостатков однотранзисторных ячеек памяти, используют различные модификации ячеек памяти, однако главный базовый элемент — транзистор с плавающим затвором — остается в любом варианте ячейки памяти. Одним из модифицированных вариантов ячейки памяти является двухтранзисторная ячейка, содержащая обычный CMOS-транзистор и транзистор с плавающим затвором (рис. 5). Обычный транзистор используется для изоляции транзистора с плавающим затвором от битовой линии.

Преимущество двухтранзисторной ячейки памяти заключается в том, что с ее помощью можно создавать более компактные и хорошо масштабируемые микросхемы памяти, поскольку в данном случае транзистор с плавающим затвором изолируется от битовой линии. Кроме того, в отличие от однотранзисторной ячейки памяти, где для записи информации используется метод инжекции горячих электронов, в данном случае и для записи, и для стирания информации применяется метод квантового туннелирования Фаулера-Нордхейма, что позволяет снизить напряжение, необходимое для операции записи. Как будет показано в дальнейшем, двухтранзисторные ячейки используются в памяти с архитектурой NAND.

Ячейка SST

Описанными ячейками памяти не исчерпывается все многообразие возможных конструкций. Широкое распространение получили и другие типы ячеек памяти, например ячейка SST, разработанная компанией Silicon Storage Technology, Inc.

По принципу действия SST-ячейка во многом напоминает уже рассмотренную однотранзисторную ячейку памяти.

Однако в транзисторе SST-ячейки изменены формы плавающего и управляющего затворов (рис. 6). Управляющий затвор выровнен своим краем с краем стока, а его изогнутая форма дает возможность разместить плавающий затвор частично под ним и одновременно над областью истока. Такое расположение плавающего затвора позволяет, с одной стороны, упростить процесс помещения на него заряда методом инжекции горячих электронов, а с другой стороны, упростить процесс снятия заряда за счет эффекта туннелирования Фаулера-Нордхейма.

При снятии заряда туннелирование электронов происходит не в область истока, как у рассмотренной однотранзисторной ячейки, а в область управляющего затвора. Для этого на управляющий затвор подается высокое положительное напряжение. Под воздействием электрического поля, создаваемого управляющим затвором, происходит туннелирование электронов с плавающего затвора, чему способствует его изогнутая к краям форма.

При помещении заряда на плавающий затвор сток заземляется, а к истоку и к управляющему затвору подается положительное напряжение. Управляющий затвор формирует при этом канал проводимости, а напряжение между стоком и истоком «разгоняет» электроны, сообщая им энергию, достаточную для преодоления потенциального барьера, то есть для туннелирования на плавающий затвор.

В отличие от однотранзисторной ячейки памяти ячейка SST имеет и несколько иную схему организации массива памяти.

MLC-ячейки памяти

Все рассматривавшиеся до этого варианты ячеек памяти способны сохранять только один бит информации в расчете на одну ячейку. Однако существуют и такие ячейки, каждая из которых сохраняет по нескольку битов, — это многоуровневые ячейки, или MLC (MultiLevel Cell).

Принцип работы многоуровневой MLC-ячейки памяти достаточно прост и во многом схож с принципом работы однотранзисторной ячейки на базе транзистора с плавающим затвором.

Как уже отмечалось при рассмотрении однотранзисторной ячейки памяти, наличие логической единицы или нуля определяется по значению напряжения на битовой линии и зависит от наличия или отсутствия заряда на плавающем затворе. Если на управляющий затвор подается положительное напряжение, то при отсутствии заряда на плавающем затворе транзистор открыт и напряжение между стоком и истоком мало, что соответствует логическому нулю. Если же на плавающем затворе имеется отрицательный заряд, своим полем экранирующий поле, создаваемое управляющим затвором, то транзистор оказывается в закрытом состоянии, что соответствует высокому напряжению между стоком и истоком (логическая единица). Понятно, что даже при наличии отрицательного заряда на плавающем затворе транзистор можно перевести в открытое состояние, однако для этого придется подать большее напряжение (пороговое напряжение) на управляющий затвор. Следовательно, об отсутствии или наличии заряда на плавающем затворе можно судить по пороговому значению напряжения на управляющем затворе. Поскольку пороговое напряжение зависит от величины заряда на плавающем затворе, то можно не только определить два предельных случая — отсутствие или присутствие заряда, но и по величине порогового напряжения судить о количестве заряда. Таким образом, если имеется возможность размещать на плавающем затворе разное количество уровней заряда, каждому из которых соответствует свое значение порогового напряжения, то в одной ячейке памяти можно сохранять несколько информационных битов. К примеру, для того, чтобы с использованием такого транзистора сохранять в одной ячейке 2 бита, необходимо различать четыре пороговых напряжения, то есть иметь возможность размещать на плавающем затворе четыре различных уровня заряда. Тогда каждому из четырех пороговых напряжений можно поставить в соответствие комбинацию двух битов: 00, 01, 10, 11.

Для того чтобы иметь возможность записывать в одну ячейку 4 бита, необходимо различать уже 16 пороговых напряжений.

Ячейки MLC активно разрабатываются компанией Intel, поэтому технология памяти на основе MLC-ячеек получила название Intel StrataFlash.

Ячейки Saifun NROM и MirrorBit

Intel StrataFlash на базе MLC-ячеек — не единственная технология, позволяющая сохранять несколько информационных битов в одной ячейке. Израильской компанией Saifun разработана еще одна технология — Saifun NROM technology. Аналогичная технология под названием MirrorBit есть и у компании AMD. И хотя сама компания AMD заявляет о технологии MirrorBit как о своей разработке, возникают большие сомнения в ее правоте. Компания Saifun также усомнилась в авторских правах AMD и подала иск в суд, который был удовлетворен. В связи с этим мы будем рассматривать только технологию Saifun NROM technology.

Ячейка NROM (Nitrid ROM) по своей структуре напоминает транзистор с плавающим затвором. Управляющий затвор подключается к линии слов (Word Line), а сток и исток (они, кстати сказать, совершенно одинаковые), подключаются к двум разным линиям бит. Плавающий затвор выполнен из нитрида кремния (Si3N4) (рис. 7).

Принцип действия такого транзистора аналогичен принципу работы обычного транзистора с плавающим затвором, но за одним исключением. Дело в том, что нитрид кремния, из которого изготавливается плавающий затвор, препятствует «растечению» заряда, то есть позволяет локализовать его в ограниченном пространстве плавающего затвора. Фактически это позволяет сохранять два информационных бита с использованием одного затвора.

Для записи информационного бита в такую ячейку к управляющему затвору и одному из стоков/истоков подается напряжение. За счет инжекции горячих электронов через слой диэлектрика электроны проникают в плавающий затвор, локализуясь в области, ближайшей к тому стоку/истоку, к которому прикладывалось напряжение.

Удаление заряда с плавающего затвора происходит за счет процесса инжекции дырок, для чего на сток/исток подается положительное напряжение. Дырки, туннелирующие в область плавающего затвора, рекомбинируют с электронами, что приводит к уничтожению заряда.

Архитектура флэш-памяти

ассмотренная нами простейшая ячейка флэш-памяти на основе транзистора с плавающим затвором, способная сохранять один бит информации, может использоваться для создания массивов энергонезависимой памяти. Для этого нужно только соответствующим образом объединить в единый массив множество ячеек, то есть создать архитектуру памяти.

Существует несколько типов архитектур флэш-памяти, но наибольшее распространение получили архитектуры NOR и NAND.

Архитектура NOR

Самая простая для понимания архитектура флэш-памяти — архитектура NOR (рис. 8).

Как уже отмечалось, для инициализации ячейки памяти, то есть для получения доступа к содержимому ячейки, необходимо подать напряжение на управляющий затвор. Поэтому все управляющие затворы должны быть подсоединены к линии управления, называемой линией слов (Word Line). Анализ содержимого ячейки памяти производится по уровню сигнала на стоке транзистора. Поэтому стоки транзисторов подключаются к линии, называемой линией битов (Bit Line).

Своим названием архитектура NOR обязана логической операции ИЛИ-НЕ (английская аббревиатура — NOR). Логическая операция NOR над несколькими операндами дает единичное значение, когда все операнды равны нулю, и нулевое значение во всех остальных случаях. Если под операндами понимать значения ячеек памяти, то в рассмотренной архитектуре единичное значение на битовой линии будет наблюдаться только в том случае, когда значение всех ячеек, подключенных к данной битовой линии, равно нулю (все транзисторы закрыты).

Архитектура NOR обеспечивает произвольный быстрый доступ к памяти, однако процессы записи (используется метод инжекции горячих электронов) и стирания информации происходит достаточно медленно. Кроме того, в силу технологических особенностей производства микросхем флэш-памяти с архитектурой NOR, размер самой ячейки получается весьма большим и потому такая память плохо масштабируется.

Архитектура NAND

Другой распространенной архитектурой флэш-памяти является архитектура NAND, соответствующая логической операции И-НЕ. Операция NAND дает нулевое значение только в том случае, когда все операнды равны нулю, и единичное значение во всех остальных случаях. Как мы уже отмечали, нулевое значение соответствует открытому состоянию транзистора, поэтому архитектура NAND подразумевает, что битовая линия имеет нулевое значение в случае, когда все подсоединенные к ней транзисторы открыты, и единичное значение — когда хотя бы один из транзисторов закрыт. Такую архитектуру можно организовать, если подключать транзисторы с битовой линии не по одному (как в архитектуре NOR), а последовательными сериями (рис. 9).

В сравнении с архитектурой NOR данная архитектура в силу особенностей технологического процесса производства позволяет добиться более компактного расположения транзисторов, а следовательно, хорошо масштабируется. В отличие от NOR-архитектуры, где запись информации производится методом инжекции горячих электронов, в архитектуре NAND запись осуществляется методом туннелирования FN, что позволяет реализовать более быструю запись, чем для архитектуры NOR. Чтобы уменьшить негативный эффект низкой скорости чтения, микросхемы NAND снабжаются внутренним кэшем.

Кроме рассмотренных нами архитектур NOR и NAND, во флэш-памяти используются и другие архитектуры, например AND, DiNOR и т.д., но они не получили массового распространения.

Типы флэш-карт

Настоящее время на рынке присутствуют карты флэш-памяти различных форматов, самые новые из которых — это Secure Digital (SD), Memory Stick (MS), MultiMediaCard (MMC) и xD-Picture Card (XD). Не стоит также забывать и о хорошо зарекомендовавших себя форматах CompactFlash (CF) и SmartMedia (SM).

По оценкам некоторых аналитических изданий, в настоящее время 54% рынка занимают карты CF, на втором месте — Memory Stick (25%), на третьем — Secure Digital (10%), далее следуют SmartMedia (8%) и MultiMediaCard (3%).

Карты памяти CompactFlash представляют собой высококачественные универсальные перезаписываемые носители информации, ориентированные на бытовую электронику и компьютерное оборудование нового поколения. Компактность и надежность этих носителей делают их идеальным решением для использования в цифровых фотокамерах, персональных цифровых секретарях (PDA), МР3-плеерах, сотовых телефонах, карманных сканерах, фотопринтерах, портативных терминалах, магнитофонах, диктофонах, устройствах глобальной навигации и во многих других устройствах, оснащенных слотом CompactFlash.

CompactFlash является одним из старейших и самым распространенным в настоящий момент стандартом сменных карт флэш-памяти, а также прямым потомком карт PCMCIA. На карты этого стандарта приходится более 54% мирового рынка карт памяти. Первая серийная карта CompactFlash была изготовлена корпорацией SanDisk в 1994 году.

В октябре 1995 года была создана некоммерческая организация Compact Flash Association (CFA), куда помимо компании SanDisk вошли IBM, Canon, Kodak, HP, Hitachi, Epson и Socket Communications.

Размер карты CompactFlash составляет 43Ѕ36Ѕ3,3 мм, а интерфейсный разъем оснащен 50 контактами.

В настоящее время CompactFlash представляет собой наиболее выгодное решение в плане удельной стоимости хранимых носителем данных на основе флэш-памяти при объеме более 32 Мбайт.

Одним из главных достоинств карты CompactFlash является наличие встроенного ATA-контроллера, благодаря которому она совместима с IDE-интерфейсом, что подразумевает возможность эмуляции жесткого диска. На программном уровне карта ничем не отличается от винчестера: она обладает всеми необходимыми параметрами, такими как количество виртуальных цилиндров и головок. Обращение к карте выполняется с помощью стандартного аппаратного прерывания IRQ 14, и зачастую для работы с CompactFlash не нужны специальные драйверы.

Встроенный преобразователь напряжения питания позволяет подключать карты CompactFlash в слоты с напряжением как 3,3 В, так и 5 В.

Существует два типа карт CompactFlash: Type I и Type II, единственное различие между которыми заключается в толщине корпуса: у карт Type I толщина составляет 3,3 мм, а у Type II — 5,5 мм. Однако карты CompactFlash Type I можно использовать в слотах Type I и Type II, а карты CompactFlash Type II — только в слотах Type II.

Карты CompactFlash являются рекордсменами как по скорости чтения/записи, так и по максимальной емкости, что обусловливает их широкое распространение в среде профессиональных цифровых камер. Что касается скорости, то следует отметить, что многие производители выпускают различные как по скорости, так и по цене серии карт CompactFlash. Сегодня в розничной торговле доступны карты CF объемом 4 Гбайт. Если же говорить о скоростях чтения/записи, то здесь все зависит и от производителя, и от серии, и даже от объема карты.

Рассмотрим, к примеру, карты CompactFlash компании Kingston Technology серий Standard (емкость 256, 512 и 1024 Мбайт) и Elite PRO (емкость 2 и 4 Гбайт). Результаты, отражающие скорости последовательного чтения и записи, были получены с помощью тестового пакета IOmeter (рис. 10 и 11).

Рис. 10. Зависимость скорости последовательного чтения от размера запроса для карт формата CompactFlash

Рис. 11. Зависимость скорости последовательной записи от размера запроса для карт формата CompactFlash

Тестирование показало, что скорость линейного чтения у серии Elite PRO более чем в два раза превосходит скорость линейного чтения у серии Standard, причем у карты емкостью 2 Гбайт эта скорость выше, чем у карты емкостью 4 Гбайт, а у всех карт серии Standard скорость последовательного чтения одинакова.

При последовательной записи наблюдается примерно та же закономерность. Исключение составила карта серии Standart емкостью 512 Мбайт, у которой скорость последовательной записи при размере запроса более 32 Кбайт оказалась даже выше, чем у карты серии Elite PRO емкостью 4 Гбайт.

SmartMedia

Спецификация карт SmartMedia была предложена компанией Toshiba в 1996 году. Впрочем, первоначально эти карты имели менее благозвучное название: Solid-State Floppy Disk Card (SSFDC). Карты SmartMedia имеют наименьшую среди существующих сегодня носителей на основе флэш-памяти толщину — всего 0,76 мм (как у кредитной карточки). Этот показатель был достигнут благодаря максимальной простоте устройства: внутри карты SmartMedia отсутствуют контроллеры и дополнительные схемы, а установлен лишь чип NAND-памяти. Такое решение позволило максимально уменьшить как размер (45Ѕ37Ѕ0,76 мм) и вес (около 2 г) самой карты, так и ее цену.

Компактность этих карт памяти позволяет использовать их в цифровых камерах, устройствах PDA, диктофонах, факс-аппаратах, принтерах, сканерах, электронных записных книжках и портативных терминалах. Кроме того, карты памяти этого типа могут применяться в оборудовании, требующем использования съемных микросхем памяти в целях обеспечения портативности, обновления ПО или наращивания объемов памяти для поддержки новых приложений.

Физический интерфейс карт SmartMedia представляет собой плоский разъем с 22 контактами. Передача данных осуществляется по 8-разрядной шине, а максимальное время доступа при чтении и записи в зависимости от емкости карты составляет от 50 до 80 нс.

Существует два вида карт SmartMedia, один из которых рассчитан на напряжение питания 3,3 В, а другой — на 5 В. Вид карты легко определить по положению так называемого ключа — срезанного угла в той части карты, где расположены контакты. Поскольку ключи у них расположены с разных сторон, эти виды карт несовместимы между собой, то есть невозможно подключить карту SmartMedia, рассчитанную на 3,3 В, в слот с напряжением питания 5 В, и наоборот.

MultiMediaCard

Карты стандарта MultiMediaCard появились в 1997 году как результат сотрудничества компаний SanDisk Corporation и Siemens AG/Infineon Technologies AG.

В 1998 году был сформирован альянс MMCA (MultiMediaCard Association), в состав которого вошли компании HP, SanDisk, Kodak, Hitachi, Infineon Technology, Lexar Media, Micron, Sanyo, Siemens и Nokia.

Стандарт был изначально «свободным», то есть лишенным каких-либо лицензионных ограничений.

На момент появления карты MMC были самыми миниатюрными (24Ѕ32Ѕ1,4 мм) и легкими (менее 2 г).

Карты MMC имеют всего семь контактов и осуществляют передачу данных через последовательный интерфейс, что обусловливает максимальную простоту их использования.

Эти карты ориентированы на применение в новейших цифровых видео- и фотокамерах, мобильных телефонах с интеллектуальными функциями и функциями загрузки/воспроизведения музыкальных записей, цифровых портативных аудиоплеерах, игрушках и игровых приставках, карманных ПК и электронных органайзерах.

Карты MultiMediaCard на 100% совместимы со всеми устройствами, использующими карты памяти типа Secure Digital.

В настоящее время начат выпуск Secure MultiMediaCard, имеющих встроенную схему защиты от несанкционированного доступа и копирования и совместимых со спецификацией SDMI.

11 ноября 2002 года было объявлено об утверждении стандарта на карты ММС уменьшенного размера, получившие название Reduced Size MultiMediaCards (RS-MMC). Размеры карт RS-MMC составляют 24Ѕ18Ѕ1,4 мм (полноформатные ММС имеют размеры 24Ѕ32Ѕ1,4 мм). Предусмотрена обратная совместимость карт RS-MMC с полноформатными носителями: при помощи механических переходников они могут быть использованы в изделиях, оснащенных слотами ММС.

По замыслу разработчиков основной сферой применения RS-MMC станут мобильные телефоны, смартфоны и коммуникаторы.

Другая разновидность карт MMC — это HS-MMC (High Speed MMC), то есть высокоскоростные карты MMC, способные обеспечивать скорость передачи данных до 52 Мбит/с.

Присутствующие сегодня на рынке карты MMC имеют максимальный объем до 1 Гбайт, а средняя скорость чтения и записи составляет у них 2 Мбайт/с.

Карты типа SD были разработаны компаниями Matsushita, San Disk и Toshiba и представляют собой дальнейшее развитие стандарта MultiMediaCard. Эти карты являются представителями третьего поколения флэш-памяти.

Для продвижения нового формата три вышеупомянутые компании основали специальную организацию — SD Association, членами которой в настоящее время являются уже более 200 производителей. Само название Secure Digital ясно указывает на поддержку этим носителем технологии защиты данных от несанкционированного копирования и доступа. В отличие от других типов сменных носителей на флэш-памяти, абсолютно все выпускаемые SD-карты оснащены специальной электронной схемой защиты данных и совместимы со спецификацией SDMI.

На карте может храниться как незащищенная (уровень 1), так и защищенная (уровни 2 и 3) информация. Информация может быть защищена от копирования либо уникальным идентификационным ключом карты (уровень 2), либо активным криптографическим алгоритмом (уровень 3), что дает владельцу карты уверенность в надежности защиты данных.

Несмотря на то что SD-карты появились относительно недавно, они уже широко используются в самых различных электронных приборах: в цифровых диктофонах и портативных плеерах, видеокамерах, автомагнитолах, карманных компьютерах, сотовых телефонах и мультимедийных проекторах.

SD-карты относятся к числу наиболее легких и компактных сменных карт: их размер составляет всего 24Ѕ32Ѕ2,1 мм, а вес — 2 г. Внешне SD-карты очень похожи на MMC и соответствуют их размерам, за исключением большей толщины. Карты имеют девять контактов (у MMC их семь) и миниатюрный переключатель для защиты от случайного уничтожения хранимых данных.

В настоящее время на рынке представлены SD-карты с максимальным объемом до 1 Гбайт. Скорость чтения и записи зависит и от размера карты, и от производителя. Если, к примеру, сравнить две SD-карты емкостью по 512 Мбайт (Kingston и Transcend), то выяснится, что в режиме последовательной записи (рис. 12) производительность карты Transcend почти в четыре раза выше производительности карты Kingston. Так, при размере запроса более 64 Кбайт скорость последовательной записи для карты Transcend составляет 7,8 Мбайт/с, а для карты Kingston — всего 1,75 Мбайт/с. Скорость линейной записи (рис. 13) также выше у карты Transcend и составляет 8,13 Мбайт/с (при размере запроса более 64 Кбайт/с), а у карты Kingston эта скорость равна 6,24 Мбайт/с.

Рис. 12. Зависимость скорости последовательной записи от размера запроса для карт формата SD

Для сравнения на рис. 12 и 13 показаны типичные скорости последовательного чтения и записи карты формата MMC, которые и при чтении, и при записи не превышают 1 Мбайт/с.

Стандарт Memory Stick был разработан компанией Sony, а его массовое внедрение началось в 1998 году. В настоящее время карты стандарта Memory Stick используются во всех без исключения цифровых фотоаппаратах Sony, что, впрочем, отнюдь не способствует их успешному продвижению на рынок. Именно поэтому последняя модель цифровой камеры Sony поддерживает карты уже двух стандартов: Memory Stick и куда более популярные CompactFlash.

Своему названию карты Memory Stick (память в пластинках) обязаны сходству с жевательными пластинками, да и габариты карточки памяти Memory Stick составляют 21,5Ѕ50Ѕ2,8 мм, что примерно соответствует размерам пластинки жевательной резинки.

Выпускается также модификация этого носителя со встроенной системой защиты от несанкционированного копирования и доступа к данным (MagicGate Memory Stick).

Сегодня компания Sony занимается внедрением носителя новой модификации, получившего название Memory Stick Duo. Эта карта совместима с обычной Memory Stick, но имеет меньшие размеры (20Ѕ31Ѕ1,6 мм) и меньший вес (всего 2 г), что позволит использовать ее в самых малых портативных устройствах, особо критичных к размеру сменных модулей памяти, например в мобильных телефонах и микрокомпьютерах. С целью облегчения интеграции нового стандарта в существующие системы предусмотрена полная обратная совместимость: при помощи специального картриджа Memory Stick Duo можно подключать к слотам для полноформатных карт Memory Stick.

В начале января 2003 года на проходившей в Лас-Вегасе выставке Consumer Electronics Show (CES) компания Sony объявила о планах по созданию карт флэш-памяти нового поколения — Memory Stick PRO. Линейка новых носителей будет выпускаться в корпусах тех же форм и размеров, что и обычные Memory Stick. От ставших уже привычными синих карточек Memory Stick новые носители будут отличаться жемчужным цветом. Если же сравнивать технические характеристики, то, кроме увеличения емкости, карты Memory Stick PRO обладают гораздо более высокой скоростью обмена данными и усовершенствованными механизмами защиты данных. Что касается перспектив наращивания объема, то технически возможно создание Memory Stick PRO емкостью до 32 Гбайт. Максимальная скорость обмена, обеспечиваемая конструкцией носителей Memory Stick PRO, составляет 160 Мбит/с, а скорость записи — не менее 15 Мбит/с.

Во всех носителях Memory Stick PRO будет использоваться технология защиты данных MagicGate. Помимо этого в них будет встроена и новая система защиты данных, позволяющая ограничивать доступ к хранимым на носителе файлам, предотвращая просмотр и распространение защищенных данных даже в случае утери или кражи карты.

Еще одно технологическое решение, реализованное при создании карт Memory Stick PRO, позволит избежать потери данных при преждевременном извлечении карты из слота. Даже если пользователь извлечет карту, не дождавшись окончания процесса записи, то после повторной установки носителя можно будет возобновить запись с того места, где она была прервана. При этом гарантируется сохранность не только данного файла, но и всей файловой системы карты.

В настоящее время на рынке представлены модели карт Memory Stick Pro объемом до 1 Гбайт, а также карты Memory Stick PRO DUO объемом до 128 Мбайт.

xD-Picture (XD)

Формат xD-Picture является самым молодым из всех рассмотренных выше форматов. Этот стандарт разработан компаниями Olympus и FujiFilm, но в силу своей новизны пока еще не получил широкого распространения.

Обозначение xD расшифровывается как eХtreme digital, что, по мнению разработчиков, акцентирует внимание на использовании этого носителя для хранения аудиовизуальных данных. Размеры карт xD-Picture составляют всего 20Ѕ25Ѕ1,7 мм, а вес — 2 г, что на данный момент является абсолютным рекордом миниатюрности.

По замыслам разработчиков карты xD-Picture должны заменить морально устаревшие карты SmartMedia, максимальная емкость которых (в силу технологических причин) не превышает 128 Мбайт. Теоретически емкость карт xD может достигать 8 Гбайт. Кроме того, тенденция миниатюризации цифровых любительских камер требует и адекватной миниатюризации карт памяти.

Карты xD-Picture имеют 22-контактный интерфейс, совместимый с интерфейсом SmartMedia Card.

Максимальная скорость чтения данных с карт xD-Picture составляет 5 Мбайт/с, а скорость записи — 3 Мбайт/с (для карт емкостью 16 и 32 Мбайт — 1,3 Мбайт/с); напряжение питания — 3,3 В; потребляемая при работе мощность — 25 мВт. Как и SmartMedia, карты xD-Picture содержат только флэш-память и не оснащаются встроенным контроллером (в отличие, например, от CompactFlash).

В настоящее время максимальная емкость карт xD-Picture составляет 512 Мбайт.