Что значит текущий звонок gsm. Прослушивание звонков GSM стало доступно каждому? Протокол шифрования GSM

Выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц .

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

  • Однодиапазонные - телефон может работать в одной полосе частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённого диапазона частот в некоторых моделях телефонов, например Motorola C115, или с помощью инженерного меню телефона.
  • Двухдиапазонные (Dual Band) - для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады.
  • Трёхдиапазонные (Tri Band) - для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады.
  • Четырехдиапазонные (Quad Band) - поддерживают все диапазоны 850/900/1800/1900.

Коммерческие сети GSM начали действовать в Европейских странах в середине г. GSM разработан позже, чем аналоговая сотовая связь и во многих отношениях была лучше спроектирована. Северо-Американский аналог - PCS, вырастил из своих корней стандарты включая цифровые технологии TDMA и CDMA , но для CDMA потенциальное улучшение качества обслуживания так и не было никогда подтверждено.

GSM Phase 1

1982 (Groupe Spécial Mobile) - 1990 г. Global System for Mobile Communications. Первая коммерческая сеть в январе г. Цифровой стандарт, поддерживает скорость передачи данных до 9,6 кбит/с. Полностью устарел, производство оборудования под него прекращено.

В 1991 году были введены услуги стандарта GSM «ФАЗА 1».

Подсистема базовых станций

Антенны трех базовых станций на мачте

BSS состоит из собственно базовых станций (BTS - Base Transceiver Station) и контроллеров базовых станций (BSC - Base Station Controller). Область, накрываемая сетью GSM, разбита на соты шестиугольной формы. Диаметр каждой шестиугольной ячейки может быть разным - от 400 м до 50 км. Максимальный теоретический радиус ячейки составляет 120 км , что обусловлено ограниченной возможностью системы синхронизации к компенсации времени задержки сигнала. Каждая ячейка покрывается одной BTS, при этом ячейки частично перекрывают друг друга, тем самым сохраняется возможность передачи обслуживания MS при перемещении её из одной соты в другую без разрыва соединения (Операция передачи обслуживания мобильного телефона (MS) от одной базовой станции (BTS) к другой в момент перехода мобильного телефона границы досягаемости текущей базовой станции во время разговора, или GPRS-сессии называется техническим термином «Handover» ). Естественно, что на самом деле сигнал от каждой станции распространяется, покрывая площадь в виде круга, но при пересечении получаются правильные шестиугольники. Каждая база имеет шесть соседних в связи с тем, что в задачи планирования размещения станций входила такая, как минимизация зон перекрывания сигнала от каждой станции. Большее число соседних станций, чем 6 - особых выгод не несёт. Рассматривая границы покрытия сигнала от каждой станции уже в зоне перекрытия, как раз получаем - шестиугольники.

Базовая станция (BTS) обеспечивает приём/передачу сигнала между MS и контроллером базовых станций. BTS является автономной и строится по модульному принципу. Направленные антенны базовых станций могут располагаться на вышках, крышах зданий и т. д.

Контроллер базовых станций (BSC) контролирует соединения между BTS и подсистемой коммутации. В его полномочия также входит управление очерёдностью соединений, скоростью передачи данных, распределение радиоканалов, сбор статистики, контроль различных радиоизмерений, назначение и управление процедурой Handover.

Подсистема коммутации

NSS состоит из нижеследующих компонентов.

Центр коммутации (MSC - Mobile Switching Centre)

MSC контролирует определённую географическую зону с расположенными на ней BTS и BSC. Осуществляет установку соединения к абоненту и от него внутри сети GSM, обеспечивает интерфейс между GSM и ТфОП , другими сетями радиосвязи, сетями передачи данных. Также выполняет функции маршрутизации вызовов, управление вызовами, эстафетной передачи обслуживания при перемещении MS из одной ячейки в другую. После завершения вызова MSC обрабатывает данные по нему и передаёт их в центр расчётов для формирования счета за предоставленные услуги, собирает статистические данные. MSC также постоянно следит за положением MS, используя данные из HLR и VLR, что необходимо для быстрого нахождения и установления соединения с MS в случае её вызова.

Домашний регистр местоположения (HLR - Home Location Registry)

Содержит базу данных абонентов, приписанных к нему. Здесь содержится информация о предоставляемых данному абоненту услугах, информация о состоянии каждого абонента, необходимая в случае его вызова, а также Международный Идентификатор Мобильного Абонента (IMSI - International Mobile Subscriber Identity), который используется для аутентификации абонента (при помощи AUC). Каждый абонент приписан к одному HLR. К данным HLR имеют доступ все MSC и VLR в данной GSM-сети, а в случае межсетевого роуминга - и MSC других сетей.

Гостевой регистр местоположения (VLR - Visitor Location Registry)

VLR обеспечивает мониторинг передвижения MS из одной зоны в другую и содержит базу данных о перемещающихся абонентах, находящихся в данный момент в этой зоне, в том числе абонентах других систем GSM - так называемых роумерах. Данные об абоненте удаляются из VLR в том случае, если абонент переместился в другую зону. Такая схема позволяет сократить количество запросов на HLR данного абонента и, следовательно, время обслуживания вызова.

Регистр идентификации оборудования (EIR - Equipment Identification Registry)

Содержит базу данных, необходимую для установления подлинности MS по IMEI (International Mobile Equipment Identity). Формирует три списка: белый (допущен к использованию), серый (некоторые проблемы с идентификацией MS) и чёрный (MS, запрещённые к применению). У российских операторов (и большей части операторов стран СНГ) используются только белые списки, что не позволяет раз и навсегда решить проблему кражи мобильных телефонов.

Центр аутентификации (AUC - Authentification Centre)

Здесь производится аутентификация абонента, а точнее - SIM (Subscriber Identity Module). Доступ к сети разрешается только после прохождения SIM процедуры проверки подлинности, в процессе которой с AUC на MS приходит случайное число RAND, после чего на AUC и MS параллельно происходит шифрование числа RAND ключом Ki для данной SIM при помощи специального алгоритма. Затем с MS и AUC на MSC возвращаются «подписанные отклики» - SRES (Signed Response), являющиеся результатом данного шифрования. На MSC отклики сравниваются, и в случае их совпадения аутентификация считается успешной.

Подсистема OMC (Operations and Maintenance Centre)

Соединена с остальными компонентами сети и обеспечивает контроль качества работы и управление всей сетью. Обрабатывает аварийные сигналы, при которых требуется вмешательство персонала. Обеспечивает проверку состояния сети, возможность прохождения вызова. Производит обновление программного обеспечения на всех элементах сети и ряд других функций.

См. также

  • Список моделей GPS-трекеров
  • GSM-терминал

Примечания

Ссылки

  • Ассоциация GSMA (The GSM Association) (англ.)
  • 3GPP - Текущий уровень стандартизации GSM, свободные стандарты (англ.)
  • Схема нумерации спецификаций 3GPP (англ.)
  • (англ.)
  • Буклет ВОЗ «Построение диалога о рисках от электромагнитных полей» (pdf 2.68Mb)
  • «Предложения ВОЗ по Проекту Изучения Влияния Электромагнитных Полей; Влияние Радиополей Мобильных Телекоммуникаций на Здоровье; Рекомендации Органам Государственной Власти»

Совершить звонок можно с любого планшета, разница лишь в том, что потребуется для совершения вызова, поскольку не все устройства имеют одинаковые технические возможности. Гаджет поддерживает соединение с сетью интернет с помощью Wi-Fi или 3G , благодаря чему есть возможность вызова абонента через специальные программы.

Большинство таких программ предоставляют возможность бесплатного общения между зарегистрированными абонентами, поэтому платить придется только за трафик . Можно использовать программы и для звонков на мобильные и стационарные телефоны, но эти услуги платные, поэтому для их использования необходимо будет периодически пополнять счет соответствующей программы.

Звонить с планшета можно не только через специальное программное обеспечение. Часть гаджетов оснащена GSM-модулем , что позволяет совершать звонки через sim-карты мобильных операторов без использования сети интернет. Этот модуль есть во всех телефонах, но с планшетами все сложнее, так как не каждая модель при наличии слота под sim-карту оснащена и GSM-модулем. Его наличие должно указываться в технических характеристиках устройства, а также чаще всего на планшете уже установлен номеронабиратель, который выглядит так же, как и в любом мобильном телефоне.

Стоит отметить, что не все планшеты с GSM-модулем изначально имеют «звонилку». Программа может быть не установлена или заблокирована . Также блокировка может стоять на международные звонки. В любом случае рекомендуется сначала попробовать установить номеронабиратель, а если после этого проблема не будет решена, потребуется перепрошивка изделия.

Планшет для звонков: технология 3G и GSM

Обе технологии относятся к способу передачи данных, однако они относятся к разным поколениям, поэтому используют разные технологии для связи. GSM во многом уступает технологии 3G, к примеру, в скорости или качестве передачи данных. Однако GSM до сих пор является глобальным кодом мобильной связи. Эта технология с небольшими отличиями используется по всему миру, что дает возможность звонить абонентам в любую точку планеты.

Используется GSM только для совершения телефонных звонков, а также обмена текстовыми сообщениями. Технология 3G также покрывает практически весь мир, однако использует для этого связь через интернет, поэтому у пользователей есть возможность обмена, в том числе, и фото/видео-файлами. Так как используются разные сети, технологии GSM и 3G не пересекаются и не могут заменить друг друга. Соединяющим звеном можно назвать компании мобильной связи, которые поставляют услуги по подключению к обоим способам передачи данных.

Наличие слота под sim-карту в планшете говорит о том, что устройство может использовать 3G сеть для обмена данными, однако без встроенного GSM-модуля использовать устройство как мобильный телефон не получится, ведь не будет технической возможности подключения к глобальной мобильной сети.

Используем планшет в качестве телефона

В не зависимости от того, какой способ передачи данных используется гаджетом, у обладателя планшета есть возможность связи с владельцами мобильных и стационарных телефонов. Для этого используется ряд новшеств, а также установка дополнительных программ.

Используем номеронабиратели

Номеронабиратели или просто звонилки используются только при встроенном GSM-модуле . Интерфейс программы аналогичен с тем, что используется в обычных мобильных телефонах. Скачать и установить программу, если она не была включена в заводской софт, можно через Google Play . Номеронабиратели относятся к бесплатному софту, поэтому имеются в свободном доступе. Программа имеет не только окно с возможностью набора номера, но также телефонную книгу, а также блок для обмена текстовыми сообщениями.

Лучшие приложения для звонков с планшета

При отсутствии встроенного GSM-модуля можно воспользоваться специальными программами для звонков. Программы должны быть не только скачаны и установлены на устройство, владелец планшета также должен быть зарегистрирован . Наиболее популярными программами являются Skype , Viber , WhatsApp , Line2 .

Skype является одной из самых надежных программ для совершения звонков и обмена сообщениями. Зарегистрированные пользователи могут создавать конференции, совершать видео- и аудио-звонки, обмениваться текстовыми сообщениями и объемными файлами. Программа позволяет общаться не только внутри сети, но и совершать звонки на стационарные и мобильные телефоны. Для этого необходимо пополнить счет используя электронную валюту (например WebMoney), либо через терминалы.

Viber является более молодой программой, однако она также успела получить хорошие отзывы пользователей. Также как и в Skype общение между зарегистрированными пользователями является бесплатным , но аккаунт в этой программе, также как и в WhatsApp , привязан к номеру мобильного телефона пользователя. Программу можно установить на мобильный телефон, тогда все контакты автоматически будут продублированы в телефонной книге программы. При входе на собственный аккаунт с другого устройства контакты будут сохранены.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!
  • мобильные устройства
  • радиоканал
  • радиосвязь
  • Добавить метки

    Данная статья будет полезна всем, кто заинтересован в бесперебойной работе компьютера, удаленном его включении, в управлении как компьютером, так и других устройств, например, двигатель автомобиля, теплица. Можно организовать полив комнатных растений без непосредственного присутствия человека. Остальные варианты возможного применения будут описаны ниже. Включение/отключение осуществляется "по звонку" и что самое главное бесплатно.

    Основные технические характеристики:
    Количество управляющих комбинаций - 2 (при доработке - больше);
    Напряжение питания - 5В;
    Количество релейных выходов - 4 (max 100V/0,5A);
    Дальность действия - ограничивается зоной покрытия сотовой сети.

    Принципиальная схема УУУ GSM "По звонку"

    Описание принципиальной схемы

    Основой устройства является один из самых «бюджетных» микроконтроллеров фирмы - Tiny13A. У данного контроллера задействованы абсолютно все 8 выводов. Причем вывод 1 используется как RESET для возможности последовательного программирования. Вывод 2 (PORTB3) настроен на вход. На этот вывод приходит оптически развязанный сигнал с динамика сотового телефона. Сам динамик следует выпаять. О состоянии на выводе 2 микроконтроллера информирует зеленый светодиод VD1. К выводам 3,7,6,5 подключены реле, зашунтированные диодами VD6…VD9 для защиты выходов микроконтроллера. Параллельно реле через резисторы подключены красные светодиоды, сигнализирующие о состояниях выходов.

    Питание 5В предполагается брать с зарядного устройства телефона, так как сейчас многие телефоны заряжаются от USB. При наличии большего напряжения следует установить стабилизатор, например, LM7805.

    Реле потребляют ток около 10мА, поэтому было решено подключить их напрямую к выводам микроконтроллера.

    УУУ GSM "По звонку" применяется для включения компьютера, поэтому назначения выходов следующие:
    1. XT3 – RESET PC – подключить к контактам RST на материнской плате;
    2. XT4 – параллельно клавише CTRL на клавиатуре (для чего – поясню ниже);
    3. XT5 - параллельно клавише F1 на клавиатуре;
    4. XT6 – ROWER ON - подключить к контактам PW на материнской плате.

    Вначале предполагалось подключать данное устройство к клавиатуре. Поэтому было решено вывести отдельно каналы 2 и 3. В биосе при этом надо сделать активным включение компьютера с клавиш CTRL+F1. Каналы 2 и 3 имитируют нажатие именно этой комбинации.

    Используемые в схеме радиоэлементы

    Основа, как было сказано выше, – микроконтроллер Tiny13A. При соответствующем изменении прошивки и схемы возможна замена на любой другой, так как Tiny13A обладает самым малым функционалом. Оптопара - распространенная 4N35. Возможна замена на аналогичную с выходным током не менее 20мА. Все резисторы применены с рассеиваемой мощностью 0,25Вт. Их номинал указан на принципиальной схеме устройства. Можно использовать любые светодиоды диаметром 5мм. Реле –SIP-1A05. Можно применить аналогичные с током катушки не более 15-20мА и напряжением 5VDC. Клеммники – DG301-5.0-02P-12 или аналогичные.

    Описание ПО и прошивки

    Вначале был вариант использования сервисов типа DynDNS. Но данный вариант был быстро отклонен по нескольким причинам: некоторые сервисы являются платными и необходимо проводное подключение к сети. Последнее обусловлено отсутствием на данный момент у многих компьютеров функции Wake on USB. Моя же разработка не ограничена зоной покрытия Wi-Fi сети и, более того, Интернета (имеется ввиду включение/отключение. Управление же компьютером, например, с телефона, требует подключения к Интернету).

    Универсальность данного способа удаленного управления нагрузкой заключается в том, что можно использовать абсолютно любой телефон, который способен воспроизводить MP3.

    Также у данной конструкции возможно развитие. С таким же успехом можно управлять не только компьютером, ноутбуком, но и, например, поливным устройством в саду или дома, открывать - закрывать двери и форточки в теплице, запускать двигатель автомобиля, перекрывать воду, газ на даче и дома. Можно включать предварительный прогрев бани, в которой используются электрические нагреватели.

    Включив данным устройством компьютер при наличии у компьютера выхода в Интернет, значительно повышаются универсальность и области применения устройства "По звонку". А именно, при помощи специализированного ПО и при наличи Wi-Fi сети можно организовать беспроводное видеонаблюдение "По звонку". Установив IP-видеокамеры можно в необходимый момент наблюдать за контролируемым объектом. После проверки можно выключить компьютер как "по звонку", так и по сети Интернет, используя специализированное ПО.

    Подключие к порту USB компьютера устройства управления нагрузкой (например Мастер КИТ) и одновременное соединение с удаленным рабочим столом значительно расширяет список коммутируемых каналов.

    Также имеется возможность многогранного увеличения числа каналов управления. Выделим два из них:

    1. Путем добавления других номеров. Этот способ предполагает создание новых MP3 "мелодий" для телефона и установку их на определенные номера. После этих манипуляций необходимо отладить контрольный 32-битный пакет для новых номеров в контроллере. (см. отладка контрольного 32-битного пакета). Данный способ не требует наличия компьютера. Нужен только телефон, поддерживающий MP3. Наверняка у каждого радиолюбителя найдется коробочка старых сотовых телефонов. Преимуществами этого варианта являются простота конструкции, минимум затрат. Сегодня не каждый захочет устанавливать на даче компьютер. Это не только опасно, но и влечет за собой увеличение стоимости изделия.

    2. Применение устройства управления нагрузкой USB для компьютера. Для использования данного варианта дополнительно к основному оборудованию потребуются следующие девайсы: компьютер (ноутбук), устройство управления нагрузкой USB, USB-модем для связи с Интернетом. Здесь возможности безграничны. Это и охрана, и удаленное управление, и мониторинг.

    Проект в среде программирования CodeVisionAVR можно найти в прилагаемом архиве. В самом начале прошивки можно видеть те самые контрольные 32-битные пакеты. Данная программа является отлаженной и не требует вмешательства. Далее идет инициализация микроконтроллера. В бесконечном цикле while ожидаем появления на ножке2 микроконтроллера логического «0». Как только он появился, идет заполнение переменной. После заполнения 32 битов накладываем на эту переменную маску. При условии равенства какому-либо значению выполняется соответствующее действие. О выполняемых действиях было написано выше. Добавлю, что при совпадении с первым контрольным 32-битным пакетом происходит следующее: имитируем нажатие клавиши Ctrl, имитируем нажатие клавиши F1, отпускаем. Потом имитируем нажатие кнопки включения компьютера. Как видно, можно использовать любой из предложенных вариантов.

    При совпадении контрольного пакета со вторым имитируется нажатие кнопки Reset на системном блоке компьютера. Эта функция будет необходима при использовании старых компьютеров, где есть большая вероятность зависания, которое можно определить все по тому же специализированному ПО, а их сейчас очень много.

    Программирование фьюзов

    Ниже представлены фьюзы для среды программирования :
    LOW
    SPIEN галка
    EESAVE нет
    WDTON галка
    CKDIV8 нет
    SUT1 галка
    sut0 Нет
    CKSEL1 галка
    CKSEL0 нет
    HIGH
    SELFPRGEN нет
    DWEN нет
    BODLEVEL1 нет
    BODLEVEL0 нет
    RSTDISBL нет

    Настройка устройства

    Вся настройка сводится к отладке контрольного 32-битного пакета.

    Я выделил два основных способа:

    1. Моделирование в Proteus. Данный способ привлекателен тем, что можно выявить ошибки на этапе разработки, а не на этапе сборки. Этот метод не принес положительного результата в конечном итоге, но помог справиться с мелкими недочетами. Созданная по временным диаграммам прошивка в Proteus работала идеально, а в "железе" отказалась. Мной была создана дополнительная отладочная прошивка для второго такого же контроллера для моделирования в . Дополнительный контроллер Tiny13 имитировал MP3-мелодии в зависимости от нажатой кнопки. При нажатии кнопки *** имитировался звонок с SIM1 (для простоты изложения материала я буду называть номера SIM1 и SIM2. Проект делался для 2х комбинаций). Соответственно при нажатии кнопки *** - звонок с SIM2. В архиве можно обнаружить файлы Proteus.

    2. Второй способ очень оригинален. Для отладки устройства потребуется видеокамера или фотоаппарат с возможностью видеосъемки. Была создана отладочная прошивка контроллера. Суть отладки заключается в вычислении действительного контрольного 32-битного пакета, потому что, как было написано выше, программа, отлаженная в Proteus, в железе работать отказалась. Алгоритм программы таков, что при каждом считанном значении логической "1" реле К1 изменяет свое состояние на противоположное. Это индицирует красный светодиод VD2. Аналогично этому, при считывании логического "0" реле К2 изменяет свое состояние на противоположное, индицируя это светодиодом VD3. Порядок действий следующий. Закачиваем прилагаемые "MP3-мелодии" в телефон. Первую устанавливаем на звонок с SIM1, вторую - с SIM2. Ставим на запись видеоаппарат. Подаем на схему питание. Звоним последовательно сначала с SIM1, потом с SIM2. Скидываем записанное видео на компьютер и воспроизводим его замедленно. Параллельно анализируем работу светодиодов и записываем полученное логическое значение в заранее подготовленную таблицу. При правильном считывании должны получиться два контрольных 32-битных пакета. Эти значения следует записать в начало программы. Далее прошиваем контроллер полученной скомпилированной прошивкой и устанавливаем его на плату. В прикрепленном архиве можно найти уже отлаженную прошивку, которая написана под MP3 "мелодии", прилагаемые в этом же архиве. В результате, таким оригинальным способом были вычислены контрольные 32-битные пакеты.

    Ниже на рисунке представлены временные диаграммы MP3 «мелодий»

    Печатная плата

    Печатную плату в форматах dip и pdf можно найти в архиве. Ниже приведен скрин печатной платы, которая выполнена на одностороннем фольгированном стеклотекстолите методом ЛУТ.

    Итоговая стоимость устройства

    ATtiny13A – 28 рублей;
    4 реле – 150 рублей;
    2 винтовых зажима – 5 рублей;
    Оптопара 4N35 – 9 рублей;
    Конденсатор – 5 рублей;
    Светодиоды 6 шт. (на схеме светодиод питания не показан, на плате есть) – 6 рублей;
    Диоды 1N4007 – 4 рубля;
    Резисторы 5 рублей;
    Разъемы «Тюльпан» - 15 рублей;
    Разъем DRB-9MA – 13 рублей;
    Телефон китайский – 300 рублей;
    Печатная плата – 40 рублей;
    Корпус – распределительная коробка 75х75 – 30 рублей.

    Итого: 610 рублей.

    При наличии телефона стоимость деталей всего 310 рублей!

    Фото собранного устройства:

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    МК AVR 8-бит

    ATtiny13A

    1 В блокнот
    Оптопара

    4N35M

    1 В блокнот
    VD1-VD5 Светодиод 5 В блокнот
    VD6-VD9 Выпрямительный диод

    1N4148

    4 В блокнот
    С1 Конденсатор электролитический 1000 мкФ 16В 1 В блокнот
    R1 Резистор

    300 Ом

    1 В блокнот
    R2 Резистор

    390 Ом

    1