Шина usb назначение виды характеристики. Универсальная последовательная шина

Первая спецификация (версия 1.0) USB была опубликована в начале 1996 года, а осенью 1998 года появилась спецификация 1.1, исправляющая проблемы, обнаруженные в первой редакции. Весной 2000 года была опубликована версия 2.0, в которой предусматривалось 40-кратное повышение пропускной способности шины. Так, спецификация 1.0 и 1.1 обеспечивает работу на скоростях 12 Мбит/с и 1,5 Мбит/с, а спецификация 2.0 - на скорости 480 Мбит/с. При этом предусматривается обратная совместимость USB 2.0 с USB 1.х.

Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel , Microsoft , Hewlett-Packard , Texas Instruments , NEC и. NXP Semiconductors В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. В дополнение к четырем линиям USB 2.0 в USB 3.0 добавляется еще четыре линии связи (две витых пары). Новые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с, таким образом, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с и позволяет передать 1 Тб не за 8-10 часов, а за 40 минут-1 час. Версия 3.0 так же может похвастаться увеличенной силой тока с 500 мА до 900 мА, поэтому пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.

Общая архитектура USB

Физическая архитектура USB определяется следующими правилами:

  • устройства подключаются к хосту;
  • физическое соединение устройств между собой осуществляется по топологии многоярусной звезды, вершиной которой является корневой хаб;
  • центром каждой звезды является хаб;
  • каждый кабельный сегмент соединяет между собой две точки: хост с хабом или функцией, хаб с функцией или другим хабом;
  • к каждому порту хаба может подключаться периферийное USB-устройство или другой хаб, при этом допускаются до 5 уровней каскадирования хабов, не считая корневого.

Самым верхним уровнем является корневой концентратор, который обычно совмещается с USB контроллером.

К корневому концентратору могут быть подключены либо устройства, либо еще концентраторы, для увеличения числа доступных портов. Концентратор может быть выполнен в виде отдельного устройства, либо быть встроенным в какое-то другое, т.е. устройства, подключаемые к USB, можно подразделить на функциональные устройства, т.е. те, которые выполняют какую-то конкретную функцию (например, мыши), устройства-концентратор, выполняющие только функцию только разветвления, и совмещенные устройства, имеющие в своем составе концентратор, расширяющие набор портов (например, мониторы, с портами для подключения других).


На пятом уровне комбинированное устройство использоваться не может. Кроме того отдельно стоит упомянуть о хосте, являющемся скорее программно-аппаратным комплексом, нежели просто устройством.


Детали физической архитектуры скрыты от прикладных программ в системном программном обеспечении (ПО), поэтому логическая архитектура выглядит как обычная звезда, центром которой является прикладное ПО, а вершинами - набор конечных точек. Прикладная программа ведет обмен информацией с каждой конечной точкой.

Составляющие USB

Шина USB состоит из следующих элементов:


Свойства USB-устройств

  • адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;
  • конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;
  • передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;
  • управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. При конфигурировании устройство заявляет свои потребности тока, но не более 500 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;
  • приостановка - USB-устройство должно поддерживать приостановку (suspended mode), при которой его потребляемый ток не превышает 500 мкА. USB-устройство должно автоматически приостанавливаться при прекращении активности шины;
  • удаленное пробуждение - возможность удаленного пробуждения (remote wakeup) позволяет приостановленному USB-устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации USB-устройства. При конфигурировании эта функция может быть запрещена.

Логические уровни обмена данными

Спецификация USB определяет три логических уровня с определенными правилами взаимодействия. USB-устройство содержит интерфейсную, логическую и функциональную части. Хост тоже делится на три части - интерфейсную, системную и ПО. Каждая часть отвечает только за определенный круг задач.

Таким образом, операция обмена данными между прикладной программой и шиной USB выполняется путем передачи буферов памяти через следующие уровни:

  • уровень клиентского ПО в хосте:
    • обычно представляется драйвером USB-устройства;
    • обеспечивает взаимодействие пользователя с операционной системой с одной стороны и системным драйвером с другой;
  • уровень системного драйвера USB в хосте(USB, Universal Serial Bus Driver):
    • управляет нумерацией устройств на шине;
    • управляет распределением пропускной способности шины и мощности питания;
    • обрабатывает запросы пользовательских драйверов;
  • уровень хост-контроллера интерфейса шины USB (HCD, Host Controller Driver):
    • преобразует запросы ввода/вывода в структуры данных, по которым выполняются физические транзакции;
    • работает с регистрами хоста.

Отношения клиентского программного обеспечения и USB устройств: USB предоставляет для взаимодействия программный интерфейс и только его, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Для клиентской программы USB - это лишь набор функций.

Взаимодействие компонентов USB представлено на схеме ниже:

В рассматриваемую структуру входят следующие элементы:

Физическое устройство USB — устройство на шине, выполняющее функции, интересующие конечного пользователя.

Client SW — ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

USB System SW — системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

USB Host Controller — аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

Принципы передачи данных

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Канал является логической связкой между хостом и конечной точкой внешнего устройства.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщений.

Поток доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: сплошной, изохронный и прерывания. Доставка всегда идет в порядке «первым вошел — первым вышел» (FIFO); с точки зрения USB, данные потока неструктурированны. Сообщения имеют формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двухсторонний обмен сообщениями адресуется к одной и той же конечной точке. Для доставки сообщений используется только обмен типа «управление».

С каналами связаны характеристики, соответствующие конечной точке. Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

Любой обмен по шине USB инициируется хост-контроллером. Он организует обмены с устройствами согласно своему плану распределения ресурсов.

Контроллер циклически (с периодом 1,0 ± 0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные передачи.

Каждый кадр начинается с посылки пакета-маркера SOF (Start Of Frame, начало кадра), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame, конец кадра), на время которого хабы запрещают передачу по направлению к контроллеру. Если хаб обнаружит, что с какого-то порта в это время ведется передача данных, этот порт отключается.

В режиме высокоскоростной передачи пакеты SOF передаются в начале каждого микрокадра (период 125 ± 0,0625 мкс).

Хост планирует загрузку кадров так, чтобы в них всегда находилось место для наиболее приоритетных передач, а свободное место кадров заполняется низкоприоритетными передачами больших объемов данных. Спецификация USB позволяет занимать под периодические транзакции (изохронные и прерывания) до 90% пропускной способности шины.

Каждый кадр имеет свой номер. Хост-контроллер оперирует 32-битным счетчиком, но в маркере SOF передает только младшие 11 бит. Номер кадра циклически увеличивается во время EOF.

Для изохронной передачи важна синхронизация устройств и контроллера. Есть три варианта синхронизации:

  • синхронизация внутреннего генератора устройства с маркерами SOF;
  • подстройка частоты кадров под частоту устройства;
  • согласование скорости передачи (приема) устройства с частотой кадров.

В каждом кадре может быть выполнено несколько транзакций, их допустимое число зависит от скорости, длины поля данных каждой из них, а также от задержек, вносимых кабелями, хабами и устройствами. Все транзакции кадров должны быть завершены до момента времени EOF. Частота генерации кадров может немного варьироваться с помощью специального регистра хост-контроллера, что позволяет подстраивать частоту для изохронных передач. Подстройка частоты кадров контроллера возможна под частоту внутренней синхронизации только одного устройства.

Информация по каналу передается в виде пакетов (Packet). Каждый пакет начинается с поля синхронизации SYNC (SYNChronization), за которым следует идентификатор пакета PID (Packet IDentifier). Поле Check представляет собой побитовую инверсию PID.

Структура данных пакета зависит от группы, к которой он относится.

1. Клиентское ПО посылает IPR-запросы уровню USBD.

2. Драйвер USBD разбивает запросы на транзакции по следующим правилам:

  • выполнение запроса считается законченным, когда успешно завершены все транзакции, его составляющие;
  • все подробности отработки транзакций (такие как ожидание готовности, повтор транзакции при ошибке, неготовность приемника и т. д.) до клиентского ПО не доводятся;
  • ПО может только запустить запрос и ожидать или выполнения запроса или выхода по тайм-ауту;
  • устройство может сигнализировать о серьезных ошибках, что приводит к аварийному завершению запроса, о чем уведомляется источник запроса.

3. Драйвер контроллера хоста принимает от системного драйвера шины перечень транзакций и выполняет следующие действия:

  • планирует исполнение полученных транзакций, добавляя их к списку транзакций;
  • извлекает из списка очередную транзакцию и передает ее уровню хост-контроллера интерфейса шины USB;

4. Хост-контроллер интерфейса шины USB формирует кадры;

5. Кадры передаются последовательной передачей бит по методу NRZI

Таким образом, можно сформировать следующую упрощенную схему:

1. каждый кадр состоит из наиболее приоритетных посылок, состав которых формирует драйвер хоста;

2. каждая передача состоит из одной или нескольких транзакций;

3. каждая транзакция состоит из пакетов;

4. каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.

Типы сообщений в USB

Спецификация шины определяет четыре различных типа передачи (transfer type) данных для конечных точек:

  • управляющие передачи (Control Transfers ) — используются хостом для конфигурирования устройства во время подключения, для управления устройством и получения статусной информации в процессе работы. Протокол обеспечивает гарантированную доставку таких посылок. Длина поля данных управляющей посылки не может превышать 64 байт на полной скорости и 8 байт на низкой. Для таких посылок хост гарантированно выделяет 10% полосы пропускания;
  • передачи массивов данных (Bulk Data Transfers ) — применяются при необходимости обеспечения гарантированной доставки данных от хоста к функции или от функции к хосту, но время доставки не ограничено. Такая передача занимает всю доступную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет у таких передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи. Такие посылки используются, например, принтерами или сканерами;
  • передачи по прерываниям (Interrupt Transfers ) — используются в том случае, когда требуется передавать одиночные пакеты данных небольшого размера. Каждый пакет требуется передать за ограниченное время. Операции передачи носят спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Поле данных может содержать до 64 байт на полной скорости и до 8 байт на низкой. Предел времени обслуживания устанавливается в диапазоне 1—255 мс для полной скорости и 10—255 мс — для низкой. Такие передачи используются в устройствах ввода, таких как мышь и клавиатура;
  • изохронные передачи (Isochronous Transfers ) — применяются для обмена данными в "реальном времени", когда на каждом временном интервале требуется передавать строго определенное количество данных, но доставка информации не гарантирована (передача данных ведется без повторения при сбоях, допускается потеря пакетов). Такие передачи занимают предварительно согласованную часть пропускной способности шины и имеют заданную задержку доставки. Изохронные передачи обычно используются в мультимедийных устройствах для передачи аудио- и видеоданных, например, цифровая передача голоса. Изохронные передачи разделяются по способу синхронизации конечных точек — источников или получателей данных — с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Механизм прерываний

Для шины USB настоящего механизма прерываний не существует. Вместо этого хост опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1 - 32 мс. Устройству разрешается посылать до 64 байт данных.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хостом, который и обеспечивает поддержку физической реализации USB-интерфейса.

Режимы передачи данных

Шина USB имеет три режима передачи данных:

  • низкоскоростной (LS, Low-speed) 1.5 Мбит/с;
  • полноскоростной (LF, Full-speed) 12 Мбит/с;
  • высокоскоростной (HS, High-speed, только для USB 2.0) 480 Мбит/с.

Подключение периферийных устройств к шине USB

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства.

Спецификация 1.0 регламентировала два типа разъёмов:


Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB.

Существуют также разъёмы типа Mini AB и Micro AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

Так же существуют миниатюрные разъёмы - Micro USB.

Тип USB 2.0 Значение контактов Цвет провода

Подключение полноскоростного устройства

Подключение низкоскоростного устройства

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert). Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.

· Лекция 15. Протокол работы USB-шины.

Общие сведения об USB -шине

У любого компьютера, выпущенного в последнее время, вы обязательно обнаружите либо на лицевой панели, либо на задней стенке разъем USB. Шина USB (Universal Serial Bus) первоначально была разработана для обеспечения легкого подключения компьютера к телефонным линиям и расширения числа портов. Первая версия стандарта (версия 1.0) была выпущена в январе 1996 года. Сейчас в основном используется версия 1.1. Стандарт USB 1.1 вполне удовлетворяет всем требованиям при работе с низко-скоростными устройствами, вроде мышей и клавиатур, и даже с устройствами, работающими на средних скоростях, вроде Ethernet-адаптеров (10 Mbit/sec) или устройств бытовой электроники (таких, как цифровые камеры и MP3-плейеры), которые пересылают только несколько мегабайт данных. Но если на периферийное устройство или в обратном направлении необходимо пересылать большие объемы информации (примеры - жесткие диски, видеокамеры высокого разрешения, или одновременное использование нескольких сетевых адаптеров стандарта 100BaseT), то скорости, обеспечиваемые USB 1.1, уже недостаточны. Поэтому в 1999 году была разработана версия 2.0 стандарта USB, обеспечивающая более высокие скорости обмена данными.

Современные компьютеры обычно имеют контроллер USB-шины, установленный на материнской плате. Для USB версии 1.1 было разработано два типа таких контроллеров, отличающихся интерфейсом взаимодействия с USB-устройствами: OHCI (Open Host Controller Interface) фирмы Compaq и UHCI (Universal Host Controller Interface) фирмы Intel. Оба типа имеют примерно одинаковые возможности и USB-устройства работают с обоими типами контроллеров. Аппаратная часть UHCI-контроллеров проще, а значит, они дешевле, но зато требуют более сложных драйверов, что увеличивает нагрузку на процессор. Версия 2.0 стандарта USB использует улучшенный вариант интерфейса - EHCI (Enhanced Host Controller Interface).

Стандарт USB предусматривает строгую иерархию устройств, управляемых основным хостом, и использование протокола master/slave для управления подключаемыми устройствами. На один USB-разъем могут быть последовательно подключены до 127 устройств. Но непосредственно подключать одно устройство к другому нельзя, поскольку питание таких устройств осуществляется по той же шине. Поэтому для подключения дополнительных устройств используются специальные хабы, обеспечивающие снабжение этих устройств необходимой энергией. В результате USB-устройства образуют как бы дерево, каждая не конечная вершина которого является хабом. Поскольку любой обмен данными инициируется только хостом, и периферийные устройства не могут начать взаимодействие, исключена возможность коллизий, вследствие чего снижается стоимость устройств. Правда, такое решение приводит к некоторому снижению производительности. В результате USB-устройства версии 1.1 могут работать в двух режимах: так называемом low speed, обеспечивающем скорость передачи данных до 1.5 Mбит/сек, и full speed, в котором скорость передачи данных может составлять 12 Мбит/сек. Это только теоретический предел, а реально производительность шины даже в идеальных условиях не превышает 8,5 Мбит/сек., а в среднем составляет около 2 Мбит/сек.

Интерфейс EHCI, используемый в устройствах версии 2, обеспечивает режим работы high speed, для которого скорость передачи данных может достигать 480 Мбит/сек. Для того чтобы USB-устройства могли обмениваться данными с такой скоростью, и хост-контроллер и само устройство должны соответствовать стандарту USB 2.0 и обеспечивать работу с интерфейсом EHCI. Однако хост-контроллеры 2.0 успешно работают с устройствами версии 1.1. И наоборот, вполне можно подключать устройства USB 2.0 к хосту (и к хабам) версии USB 1.1 и они будут прекрасно работать, но со скоростью не более 12, а не 480 Мбит/сек.

В настоящее время разработан широкий спектр устройств, подключаемых по шине USB. Это клавиатуры, мыши, джойстики, игровые приставки, сканеры, модемы, принтеры, цифровые камеры, устройства хранения информации – дисководы гибких и жестких дисков, дисководы Zip, LS120 и CD-ROM. Очень перспективный и интересный класс таких устройств образуют накопители на основе Flash-памяти .

Физическая среда

Шина USB , обладает полосой пропускания 1,5 или 12 Мбит/с.

USB -кабель состоит из 4 проводников:

Два провода формируют витую пару, применяемую в дифференциальных передачах данных;

Остальные два представляют собой линии питания и заземления устройств, не имеющих собственного питания 5 В постоянного напряжения.

USB стандарт предполагает два вида кабеля и два варианта разъемов. High-speed (высокоскоростные) кабели, для связи 12Mb в секунду, лучше экранированы, чем их менее дорогие 1.5 Mb заменители. Каждый кабель имеет "А" разъем на одной стороне и "B" на другой. Рисунок 1 показывает как "А" разъемы подсоединяются к исходящему, а "В" к нисходящему. Таким образом два типа физически различны и невозможно подключить их неправильно.

Рис 1. USB топологоия "подключение звездой"

USB шина позволяет подключать до 127 устройств. Использование такого количества устройств возможно при многоуровневом каскадировании. Наглядно это объясняет следующий рисунок:

Это первая архитектурная особенность шины USB: ее логическая топология - многоуровневая звезда.

Самым верхним уровнем является корневой концентратор, который обычно совмещается с USB контроллером. Если функции контроллера понятны, то концентратор - устройство для периферийных интерфейсов не привычное. В данном случае его функция такая же, что и концентраторов сетей передачи данных - добавление новых портов для подключения большего числа устройств. Ничего большего, чем просто разветвитель.

К корневому концентратору могут быть подключены либо устройства, либо еще концентраторы, для увеличения числа доступных портов. Допускается организация до пяти уровней. Концентратор может быть выполнен в виде отдельного устройства, либо быть встроенным в какое-то другое. С этой точки зрения устройства подключаемые к USB можно подразделить на функциональные устройства, т.е. те которые выполняют какую-то конкретную функцию и не берут на себя никаких дополнительных задач (например, мыши) устройства-концентраторы в чистом виде выполняющие только функцию разветвления, и совмещенные (комбинированные) устройства, т.е. имеющие в своем составе концентратор, расширяющие набор портов и позволяющие подключать другие устройства (в качестве наиболее часто встречающихся примеров можно назвать мониторы, позволяющие по USB осуществлять настройку параметров, и обычно имеющих еще несколько дополнительных портов, для подключения других устройств или клавиатуры, с разъемами для подключения мышей).

Надо обратить внимание, на то, что на пятом уровне комбинированное устройство использоваться не может. Кроме того отдельно стоит упомянуть о хосте, являющемся скорее программно-аппаратным комплексом, нежели просто устройством.

Физическая топология шины - звезда

Это объясняется тем, что каждый концентратор обеспечивает прозрачно для хоста соединение с устройством.

Отношения клиентского программного обеспечения и USB устройств: в отличие от привычных старых интерфейсов, где взаимодействие можно было (и нужно) осуществлять обращаясь к устройству по конкретным физическим адресам памяти и портам ввода вывода, USB предоставляет для взаимодействия программный интерфейс и только его, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Для клиентской программы USB - это лишь набор функций.

Хост, как уже было сказано ранее, программно-аппаратный комплекс.

В обязанности хоста входит:

· Слежение за подключением и отключением устройств

· Организация управляющих потоков между USB-устройством и хостом.

· Организация потоков данных между USB-устройством и хостом

· Контроль состояния устроств и ведение статистики активности

· Снабжение подключенных устройств электропитанием

Аппаратной частью является хост-контроллер - посредник между хостом и устройствами на шине.

Программные функции (перечисление устройств и их конфигурирование, управление энергопотреблением, процессами передачи, устройствами на шине и самой шиной) возложены на операционную систему. Первой популярной операционной системой, в которой поддержка USB реализована была в полном объеме стала Windows 98 Second Edition. Некоторые устройства могут быть работоспособными и под более ранними версиями (98 без SE, и изредка 95), но далеко не все и не всегда.

Концентратор (хаб) . Позволяет множественные подключения к одному порту, создавая дополнительные порты. Каждый хаб имеет один восходящий порт, предназначенный для подключения к имеющемуся в наличии свободному порту, и несколько нисходящих, к которым могут быть подключены или снова концентраторы, или конечные устройства, либо совмещенные устройства.

Хаб должен следить за подключением и отключением устройств, уведомляя хост об изменениях, управлять питанием портов. В концентраторе стандарта USB 2.0 можно выделить 3 функциональных блока: контроллер, повторитель, транслятор транзакций. Контроллер отвечает за соединения с хостом. Понятие повторитель в USB несколько отличается от принятого в сетях передачи данных. Его обязанность - соединять входной и какой-то нужный из выходных портов. Транслятор транзакций появился лишь в USB 2.0 и нужен, как всегда, из соображений совместимости с предыдущими версиями. Вкратце его суть в том, что бы обеспечивать максимальную скорость соединения с хостом. Подключенное к высокоскоростному (USB 2.0) порту старое медленное (USB 1.1) устройство съедало бы значительную часть времени, а следовательно и полезной пропускной способности шины, ведя обмен с хостом на низкой скорости (почему так происходит мы выясним позже при рассмотрении механизма обмена данными хост-устройство). Как метод борьбы транслятор транзакций буферизирует поступающий с медленного порта кадр, а затем на максимальной скорости передает его хосту, или же буферизирует получаемый на максимальной скорости кадр от хоста, передавая его затем устройству на меньшей, приемлемой для него скорости. Помимо разветвления и трансляции транзакций хаб должен осуществлять конфигурирование портов и слежение за корректным функционированием подключенных к ним устройств. Нужно сказать также, что при использовании старых и новых концентраторов вместе возможно создание неоптимальных с точки зрения производительности конфигураций. Для того что бы избежать создания узких мест в своей цепи, подключайте низкоскоростные устройства к низкоскоростным хабам, которые в свою очередь делайте последними уровнями ветвления и не подключайте их в середину высокоскоростной цепочки.

Описание протоколов используемых при передаче данных

Структура USB пакета

В отличие от аналогичных последовательных интерфейсов, где формат посылаемых данных не имеет четко организованной структуры, для USB шины разграничены различные слои протоколов.

Каждая USB транзакция состоит из следующих частей:

· Признак пакета (Заголовок определяющий что далее будет следовать)

· Пакет данных (Опционально)

· Пакет статуса транзакции (Используется для подтверждения нормального завершения транзакции и обеспечения коррекции ошибок при передаче)

Мастером на USB шине является хост. Он и является инициатором всех транзакций. Первым передаваемым пакетом является Признак (Token Packet). Он генерируется хостом для определения что будет следовать далее, какая это будет транзакция: чтение или запись, к какому устройству и конечной точке будет обращение. Следующим пакетом, как обычно, следует пакет данных (Data Packet). И в завершении транзакции следует пакет статуса (Status Packet), который либо подтверждает успешное принятие данных, либо указывает что конечная точка приостановлена (STALL) или не готова принимать данные.

Поля USB пакета

Данные по USB шине всегда передаются младшими битами вперед. USB пакет состоит из следующих полей:

· Поле синхронизации (Sync Field)

Все пакеты должны начинаться с поля синхронизации. Поле синхронизации имеет размер 8 бит для низкоскоростных и полноскоростных устройств или 32 бита для высокоскоростных устройств и используется для подсинхронизации тактового генератора, встроенного в USB контроллер. Последние два бита поля синхронизации являются маркером, который используется для идентификации конца области синхронизации и начала PID поля.

· Поле идентификатора пакета (PID Field)

Идентификатор пакета следует непосредственно после поля синхронизации в каждом передаваемом USB пакете. PID состоит из четырехбитного типа пакета, следующего за четырехбитным проверочным полем как показано на рисунке 4.

(LSB)

(MSB)

PID0

PID1

PID2

PID3

PID0

PID1

PID2

PID3

Рисунок 2. Формат поля PID.

Контрольная область PID генерируется как инверсия четырехбитного типа пакета и необходима для устранения ложного декодирования следующих за этим полем данных. Ошибка PID детектируется в том случае, когда инвертированная контрольная область не совпадает с соответствующими битами идентификатора пакета. Любой PID полученный с ошибкой или неуказанный в нижеследующей таблице, должен быть проигнорирован получателем пакета.

PID Тип

Имя PID

PID

Описание

Признак (Token)

0001

Адрес + номер конечной точки для транзакции ХОСТ -->Функция

1001

Адрес + номер конечной точки для транзакции ХОCT <-- Функция

0101

Маркер начала пакета и его номер

SETUP

1101

Адрес + номер конечной точки для SETUP транзакции ХОСТ ® Функция в канале управления

Данные

DATA0

0011

Четный PID пакета данных

DATA1

1011

Нечетный PID пакета данных

Статус

0010

Приемник принял пакет данных без ошибок

1010

Принимающее устройство не может принять данные, или передающее не может их отправить

STALL

1110

Конечна точка приостановлена (HALT) или запрос по управляющему каналу не поддерживается

Спец.

1100

ХОСТ инициирует преамбулу, разрешая трафик для низкоскоростных устройств

Рисунок 3. Типы PID .

PID биты приведены в таблице в MSB порядке. Когда они передаются по шине, правый бит (бит 0) выдается первым.

· Поле адреса устройства (Addr Field)

Поле адреса используется для идентификации к какому устройству направлен текущий пакет. Размерность поля - 7 бит, что позволяет адресовать 127 уникальных USB устройств. После сброса или включения питания, адрес устройства устанавливается по умолчанию в 0 и должен быть запрограммирован хостом в ходе процесса энумерации. Адрес 0 (заданный по умолчанию) зарезервирован для вновь подключаемых устройств и не может быть назначен для нормальной работы.

· Поле адреса конечной точки (Endpoint Field)

Поле адреса конечной точки имеет размерность 4 бита и позволяет размещать в устройстве до 16 конечных точек. Все функции должны поддерживать одну управляющую "0" конечную точку. Низкоскоростные устройства поддерживают только три канала передачи: управляющий канал, связанный с нулевой конечной точкой и два дополнительных канала (две Interrupt конечные точки). Полноскоростные устройства поддерживают максимум до 16 конечных точек.

· Поле номера кадра (Frame Number Field)

Поле номера кадра представляет собой 11-битное поле, которое инкрементируется хостом при инициировании нового кадра. Поле номера кадра начинается заново с нуля при достижения максимального значения 0х7FF, и используется только для SOF маркеров в каждом начале кадра.

· Поле циклического контроля по избыточности (CRC)

Циклический контроль по избыточности (CRC) используются для защиты всех полей кроме PID в маркерах и пакетах данных. Защита Маркера и пакета данных обеспечивает 100% нахождение всех одиночных и двойных битовых ошибок. Для маркеров предусмотрено пяти-битное поле CRC, которое используется для защиты полей ADDR и ENDP пакетов IN, SETUP,OUT или поле отметки времени маркера SOF. Для пакета данных используется 16-битный полином, кодирующий всё поле данных пакета.

· Поле конца пакета (EOP)

Поле конца пакета представляет собой сигнал окончания пакета и устанавливается на шине путем выставления сигнала "Single Ended Zero " SE0 в течении двух битовых интервалов следующего за J состоянием, установленным на время одного битового интервала.

Типы USB пакетов

Для USB шины позиционируется четыре типа пакетов. Пакеты-маркеры обозначает какого типа транзакция начинается на шине, пакет данных включает в себя передаваемую структуру данных, пакеты статуса используются для информирования об успешно выполненной транзакции или ошибках произошедших при передаче, и пакеты начала кадра инициируются при генерации нового кадра на шине.

· Маркерные пакеты (Token Packets)

Существуют три типа маркерных пакетов:

1. In - информируют USB устройство, что хост хочет читать данные из устройства

2. Out - информирует USB устройство, что хост хочет передавать данные в устройство

3. Setup - используются для обозначения начала управляющего (Control Transfer) типа передачи данных

Все маркерные пакеты имеют следующий формат:

SYNC

ADDR

ENDP

CRC5

Рисунок 4 . Маркерный пакет.

· Пакеты данных (Token Packets)

Существуют два типа пакетов данных, каждый из которых способен содержать до 1024 байтов данных.

  1. DATA0
  2. DATA1

У высокоскоростных устройств для пакетов данных определены два других PID-a: DATA2 и MDATA. Пакет данных имеет нижеследующий формат:

SYNC

DATA

CRC16

Рисунок 5. Пакет данных.

Данные всегда посылаются целым числом байт. Данные CRC16 вычисляются только для поля данных в пакете и не включают PID, который имеет собственное поле проверки.

· Пакеты подтверждения (Handshake Packets)

Существуют три типа пакетов подтверждения, структура которых имеет только PID поле:

ACK - подтверждение того, что пакет был успешно принят

NAK - информирует, что устройство в данный момент не может принимать либо отправлять данные. Также используется в Interrupt транзакциях для информирования хоста, что устройство не имеет новых данных для передачи. Хост никогда не может выдавать ответ NAK. NAK используется в целях управления потоком данных.

STALL - указывает, что устройство неспособно передавать или получать данные, и требуется вмешательство хоста для снятий состояния останова. Как только конечная точка устройства остановлена, устройство должно продолжить возвращать STALL, пока условие, вызвавшее останов не будет удалено с помощью вмешательства хоста. Хосту запрещено возвращать STALL.

Пакет подтверждения имеет нижеследующий формат:

SYNC

Рисунок 6. Пакет подтверждения.

· Пакеты начала кадра (Start of Frame Packets)

SOF пакет состоит из 11-ти битного номера кадра и генерируется хостом каждую 1ms ± 500ns для полноскоростной шины и каждые 125 µs ± 0.0625 µs для высокоскоростной шины.

Пакет начала кадра имеет нижеследующий формат:

SYNC

Frame Number

CRC16

Рисунок 7. Пакет начала кадра.

USB функция

Когда мы думаем о USB устройстве то мы представляем периферийное оборудование, но USB устройство само по себе не означает наличие только приемо-передатчика. USB устройство на самом деле представляет собой совокупность функций или законченных устройств, объединенных в одном изделии. Итак теперь мы знаем из каких составных частей состоит USB пакет.

К счастью, большинство USB контроллеров, весь физический протокол нижнего уровня поддерживают самостоятельно без вмешательства пользовательской программы. Вмешательство пользователя необходимо лишь тогда, когда на шине произошло одно из событий: прием или выдача пакета данных в/из FIFO, событие NAK или STALL, процесс энумерации или переход в режим пониженного энергопотребления.

Большинство функций имеет буфера для приема/передачи данных. Обычно их размер составляет 8 байт. Каждый буфер закреплён за определеннной конечной точкой, например за EP0 Out и EP0 In. Например хост инициирует запрос дескриптора устройства. USB контроллер функции считывает Setup пакет и определяет по адресному полю был ли он направлен именно к ней. Если пакет был направлен именно по этому адресу, то USB контроллер считывает данные в соответствующий буфер (FIFO) указанный в поле конечной точки (Endpoint Field). После этого функция генерирует пакет подтверждения, в котором указывает статус принятия пакета и устанавливает сигнал прерывания для внешнего управляющего контроллера, указывающий, что произошло событие по приему данных в RXFIFO. Все эти действия происходят без внешнего вмешательства ПО пользователя, что разгружает микроконтроллер реализующий функцию управления. ПО микроконтроллера обрабатывает прерывание - считывает из RXFIFO запрос дескриптора и отвечает на него выдачей структуры соответствующей запрошенному дескриптору.

Конечные точки

Конечные точки функции могут принимать или передавать данные. Конечные точки USB функции являются самым последним звеном в коммуникационном канале. Например, в программном слое, ваш драйвер устройства посылает пакет данных в конечную точку EP1 функции. Данные будут последовательно поступать в функцию и складываться USB контроллером в буфер RXFIFO1. Как только у управляющего микроконтроллера появиться свободное время он может считать из RXFIFO1 полученные данные. Если он хочет ответить пакетом данных, USB контроллер не может просто выставить их шину, т.к. мастером и инициатором запросов на шине является хост. Следовательно, управляющий микроконтроллер записывает пакет данных в IN конечную точку, например в EP1. Данные будут находится в буфере первой конечной точки TXFIFO1 до тех пор, пока хост не выставит на шину IN транзакцию к этой конечной точке. Конечные точки - это интерфейс связи между аппаратными средствами и микропрограммой работающей на функциональном устройстве. Все USB устройства должны поддерживать нулевую конечную точку (EP0). Она получает все управляющие и статус запросы во время процесса энумерации и всего цикла работы, пока устройство присоединено к USB шине.

Вообще конечная точка - это конец логического канала данных между хостом и устройством. В свою очередь канал - это логическое соединение между хостом и устройством. Так как конечных точек у устройства предусматривается несколько, то это означает, что обмен данными между хост-контроллером и устройством на шине может происходить по нескольким каналам, так называемый многоканальный режим. Полоса пропускания шины делиться между всеми установленными каналами. В распоряжение шина USB может предоставить каналы следующих типов:

· Каналы сообщений . Являются двунаправленными каналами и служат, не трудно сообразить, для передачи сообщений, имеющих строго определенный в спецификации формат, необходимый для обеспечения надежной идентификации и передачи команд. Возникает канал при отсылке хостом запроса в устройства, и управляет передачей только хост. Каналы сообщений используется для передач только управляющего типа (что такое смотрим ниже).

· Потоковые каналы . Являются однонаправленными. В отличие от четко определенных сообщений не имеют определенного закрепленного в стандарте формата, что означает возможность передачи данных любого вида. Эти передачи могут контролироваться не только хостом, но и устройством. Используется для передач данных типа прерывание, групповая пересылка, изохронная (смотрим ниже). В спецификации в зависимости от типа передаваемых данных, предъявляемых требований к скорости обработки, задержки доставки и т.п. определены следующие типы передач.

· Управляющие передачи . Используются для конфигурирования устройств во время подключения и выполнения других специфических функций над устройством, включая организацию новых каналов.

· Прерывания . Используются для спонтанных, но гарантированных передач с гарантированными скоростями и задержками. Используются обычно для передачи введенных данных от клавиатуры или сведений об изменении положения указателя мыши, в устройствах обратной связи, и.т.д

· Групповая пересылка . Используется для гарантированной передачи данных больших объемов без предъявленных требований к скоростям и задержкам. Занимает под себя всю свободную пропускную способность шины. В любой момент доступная полоса может быть урезана при необходимости осуществления передач других видов с более высоким приоритетом, или добавлена, при освобождении другими устройствами. Обычно такие передачи используется между принтерами, сканерами, накопителями и др.

· Изохронная передачи . Используются для потоковых передач данных в реальном времени. Резервируют определенную полосу пропускания шины, гарантируют определенные величины задержек доставки, но не гарантируют доставку (в случае обнаружения ошибки повторной передачи не происходит. Передачи этого вида используются для передачи аудио и видео трафика.

Обмен данными может осуществляться в трех скоростных режимах:

· Low Speed. Низкоскоростной режим. Скорость передачи составляет 1.5 Мбит/с.

· Full Speed. Полноскоростной режим. Скорость передачи 12 Мбит/с.

· High Speed. Высокоскоростной режим. Появился лишь в спецификации 2.0. Скорость передачи 480 Мбит/с.

Устройства на шине USB делятся на ведущие и ведомые. Фактически, ведущих устройств на шине может быть только одно, и таковым является хост. Все передачи данных инициируются хостом в соответствии определенной временной программой. Функциональные устройства сами не могут инициировать передачу, а лишь отвечают на запросы хоста. Обмен данными возможен только между хостом и устройством, и не возможен на прямую между устройствами подключенными к шине (это означает, что в принципе в первую очередь USB - это шина вывода. Транзакции на USB шине состоят из двух-трех актов: посылки пакета маркера, определяющего, что будет следовать дальше (тип транзакции, адрес устройства и его конечную точку), пакета данных (опционально), и пакета статуса транзакции (для подтверждения нормального выполнения операции или сообщения об ошибке).

Приоритеты передач по USB -шине

Все операции по передаче данных инициируются хост-системой независимо от того, принимает ли она данные или пересылает в периферийное устройство. Все не выполненные операции хранятся в виде четырех списков по типам передач:

Изохронные передачи;

Передачи прерываний;

Передачи управляющих команд;

Передачи данных больших объемов.

Списки постоянно обновляются новыми запросами. Планирование операций по передаче информации в соответствии с упорядоченными в виде списков запросами выполняется хостом с 1-миллисекундным интервалом. В начале каждого такого интервала хост посылает по шине пакет SOF (Start Of Frame - начало кадра), после чего начинается обслуживание запросов из списка изохронных передач (т.к. они имеют наивысший приоритет).

После того, как все запросы из этого списка будут обслужены, хост-система переходит к списку операций по передачи прерываний, затем к списку запросов на передачу данных большого объема.

По истечении 90% указанного 1-миллисекундного интервала хост автоматически переходит к обслуживанию запросов на передачу управляющих команд независимо от того, успел ли он полностью обслужить другие три списка или нет.

Тем самым гарантируется, что управляющим передачам всегда будет выделено не менее 10% пропускной способности шины. Если передача всех управляющих пакетов будет завершена до истечения выделенной для них доли интервала планирования, то оставшееся время будет использовано хостом для передачи данных большого объема (до конца указанного 1-миллисекундного интервала).

Таким образом:

Изохронные передачи гарантированно получают 90% пропускной способности шины;

Передачи прерываний занимают оставшуюся часть изохронных операций часть этой 90-процентной доли;

Под передачу данных большого объема выделяется все время, оставшееся после изохронных передач и передач прерываний (по-прежнему в рамках 90%-ой доли пропускной способности);

Управляющим передачам гарантируется 10% пропускной способности;

Если передача всех управляющих пакетов будет завершена до истечения выделенного для них 10%-го интервала, то оставшееся время будет использовано для передачи данных большого объема.

Источники информации

1. www.rus-linux.net (USB - Lin . html )

2. www.is.svitonline.com (USB Masters . htm )

3. Компьютерная документация от А до Я. (Технология USB 2.0. htm )

4. www.zyxel.ru – База знаний


Шина USB (U niversal S erial B us - универсальная последовательная шина) появилась по компьютерным меркам довольно давно - версия первого утвержденного варианта стандарта появилась 15 января 1996 года. Разработка стандарта была инициировна весьма авторитетными фирмами - Intel, DEC, IBM, NEC, Northen Telecom и Compaq.

Основная цель стандарта, поставленная перед его разработчиками - создать реальную возможность пользователям работать в режиме Plug&Play с периферийными устройствами. Это означает, что должно быть предусмотрено подключение устройства к работающему компьютеру, автоматическое распознавание его немедленно после подключения и последующей установки соответствующих драйверов. Кроме этого, желательно питание маломощных устройств подавать с самой шины. Скорость шины должна быть достаточной для подавляющего большинства периферийных устройств. Попутно решается историческая проблема нехватки ресурсов на внутренних шинах IBM PC совместимого компьютера - контроллер USB занимает только одно прерывание независимо от количества подключенных к шине устройств.

Практически все поставленные задачи были решены в стандарте на USB и весной 1997 года стали появляться компьютеры, оборудованные разъемами для подключения USB устройств (см. фото слева), но периферия с подключением к USB до середины 1998 года так практически и не появилась. В чем дело? Почему только к концу 1998 года уже существенно активнее производители оборудования стали предлагать на рынке устройства с USB интерфейсом? Этому есть несколько объяснений:

    отсутствие острой необходимости для пользователей настольных компьютеров в устройствах с полной поддержкой Plug&Play. Периферия к настольному компьютеру подключается, как правило, всерьез и надолго и особой нужды в частой смене периферии у подавляющего большинства пользователей нет.

    более высокая стоимость устройств с USB по сравнению с аналогичными устройствами, имеющими стандартные интерфейсы

    отсутствие поддержки со стороны производителей программного обеспечения и, главным образом, Microsoft, хотя она и была одним из авторов стандарта. Только в Windows 98 появилась полная поддержка USB, а в Windows NT она только должна быть в 1999 году.

Сейчас USB стала активно внедряться производителями компьютерной периферии. Сенсацией стало наличие в компьютере iMAC фирмы Apple Computers только USB в качестве внешней шины.

Технические характеристики

Возможности USB следуют из ее технических характеристик:

    Высокая скорость обмена (full-speed signaling bit rate) - 12 Mb/s

    Максимальная длина кабеля для высокой скорости обмена - 5 m

    Низкая скорость обмена (low-speed signaling bit rate) - 1.5 Mb/s

    Максимальная длина кабеля для низкой скорости обмена - 3 m

    Максимальное количество подключенных устройств (включая размножители) - 127

    Возможно подключение устройств с различными скоростями обмена

    Отсутствие необходимости в установке пользователем дополнительных элементов, таких как терминаторы для SCSI

    Напряжение питания для периферийных устройств - 5 V

    Максимальный ток потребления на одно устройство - 500 mA (это не означает, что через USB можно запитать устройства с общим током потребления 127 x 500 mA=63.5 A)

Поэтому целесообразно подключать к USB практически любые периферийные устройства, кроме цифровых видеокамер и высокоскоростных жестких дисков. Особенно удобен этот интерфейс для подключения часто подключаемых/отключаемых приборов, таких как цифровые фотокамеры. Конструкция разъемов для USB рассчитана на многократное сочленение/расчленение.
Возможность использования только двух скоростей обмена данными ограничивает применяемость шины, но существенно уменьшает количество линий интерфейса и упрощает аппаратную реализацию.
Питание непосредственно от USB возможно только для устройств с малым потреблением, таких как клавиатуры, мыши, джойстики и т.п.

Топология

Такой иконой официально обозначается шина USB как в Windows 98, так и на задних стенках компьютеров (к сожалению, далеко не всех), а также на всех разъемах USB. Эта икона на самом деле правильно отображает идею топологии USB. Топология USB практически не отличается от топологии обычной локальной сети на витой паре, обычно называемой "звездой". Даже терминология похожа - размножители шины также называются HUB"ами.

Условно дерево подключения USB устройств к компьютеру можно изобразить так (цифрами обозначены периферийные устройства с USB интерфейсом):

Вместо любого из устройств может также стоять HUB. Основное отличие от топологии обычной локальной сети - компьютер (или host устройство) может быть только один. HUB может быть как отдельным устройством с собственным блоком питания, так и встроенным в периферийное устройство. Наиболее часто HUB"ы встраиваются в мониторы и клавиатуры

На рисунке выше показан пример правильного соединения периферийных устройств в условную USB сеть. Так как обмен данными по USB идет только между компьютером и периферийным устройством (между устройствами обмена нет), то устройства с большими объемами приема и/или передачи данных должны подключаться либо к самому компьютеру, либо к ближайшему свободному узлу. В данном случае наивысший трафик у колонок (~1.3 Mb/s), затем идут модем и сканер, подключенные к HUB"у в мониторе и завершают цепь клавиатура, джойстик и мышь, трафик у которых близок к нулю.
Может возникнуть вопрос - почему колонки имеют такой высокий трафик? Дело в том, что колонки с USB интерфейсом существенно отличаются от обычных. Для использования таких колонок НЕ ТРЕБУЕТСЯ звуковая карта. Драйвер колонок отправляет оцифрованный звук сразу в колонки, где с помощью АЦП (ADC) он преобразуется в аналоговый сигнал и подается на динамики.

Кабели и разъемы

Сигналы USB передаются по 4-х проводному кабелю, схематично показанному на рисунке ниже:

Здесь GND - цепь "корпуса" для питания периферийных устройств, VBus - +5V также для цепей питания. Шина D+ предназначена для передачи данных по шине, а шина D- для приема данных.
Кабель для поддержки полной скорости шины (full-speed) выполняется как витая пара, защищается экраном и может также использоваться для работы в режиме минимальной скорости (low-speed). Кабель для работы только на минимальной скорости (например, для подключения мыши) может быть любым и неэкранированным.
Разъемы, используемые для подключения периферийных устройств, показаны на рисунке ниже.

Разъемы серии "А"

Разъемы серии "В"

    предназначены ТОЛЬКО для подключения к источнику, т.е. компьютеру или HUB"у.

    предназначены ТОЛЬКО для подключения к периферийному устройству

Вилка типа "A".

Вилка типа "B".

Розетка типа "А"

Розетка типа "В"

Как видно из рисунка, невозможно подключить устройство неправильно, так как разъем серии "А" можно подключить только к активному устройству на USB - HUB"у или компьютеру, а серии "В" только к собственно периферийному устройству.

USB разъемы имеют следующую нумерацию контактов:

Номер контакта

Назначение

Цвет провода

Цоколевка разъемов USB

Развитие USB

В 1999 году тот же консорциум компьютерных компаний, который инициировал разработку первой версии стандарта на шину USB, начал активно разрабатывать версию 2.0 USB, которая отличается тем, что полоса пропускания шины увеличена в 20 (!) раз, до 250 Mbits/s, что делает возможным передачу видеоданных по USB и делает ее прямым конкурентом IEEE-1394 (FireWire).
Совместимость всей ранее выпущенной периферии и высокоскоростных кабелей полностью сохраняется и сохраняется одно из самых главных достоинств USB - низкая стоимость контроллера. Контроллер стандарта 2.0 также предполагается интегрировать в chipset.
Все хорошо, но есть одно но: шина IEEE-1394 уже весьма активно используется даже в бытовых цифровых видеокамерах, для нее есть платы видеомонтажа и при постоянном падении цен на цифровые видеокамеры она будет использоваться все шире и шире. Новая же версия USB должна быть только окончательно разработана к середине 2000 года, а первые устройства с поддержкой нового варианта USB должны появиться не ранее конца 2000 года. Для компьютерной индустрии это очень большие сроки. Уже в июле 1999 года, например, фирма ASUSTeK Computers выпускает первую материнскую плату (P3B-1394) со встроенным контроллером IEEE-1394. Наверняка это не останется незамеченным и другие производители также начнут выпускать подобные платы. Поэтому к моменту выхода устройств на USB 2.0 место под солнцем может быть уже занято.

Универсальная последовательная шина

  • Mini-B Connector ECN : извещение выпущено в октябре 2000 года.
  • Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года.
  • Pull-up/Pull-down Resistors ECN
  • Errata, начиная с мая 2002 : извещение выпущено в мае 2002 года.
  • Interface Associations ECN : извещение выпущено в мае 2003 года.
    • Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
  • Rounded Chamfer ECN : извещение выпущено в октябре 2003 года.
  • Unicode ECN : извещение выпущено в феврале 2005 года.
    • Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE .
  • Inter-Chip USB Supplement : извещение выпущено в марте 2006 года.
  • On-The-Go Supplement 1.3 : извещение выпущено в декабре 2006 года.
    • USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.

USB OTG

USB 3.0

USB 3.0 находится на финальных стадиях разработки. Созданием USB 3.0 занимаются компании: Microsoft, Texas Instruments, NXP Semiconductors. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта будут физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии - пару для приёма/передачи данных, одну - для питания и ещё одну - для заземления. В дополнение к ним USB 3.0 добавляет пять новых линий (в результате чего кабель стал гораздо толще), однако новые контакты расположены параллельно по отношению к старым на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. USB 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь сможет не только подпитывать от одного хаба гораздо большее количество устройств, но и само аппаратное обеспечение, ранее поставлявшееся с отдельными блоками питания, избавится от них.


Здесь GND - цепь «корпуса» для питания периферийных устройств, VBus - +5 В, так же для цепей питания. Данные передаются по проводам D+ и D− дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов межу линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В. Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1.5 кОм (D− для режима Low-Speed и D+ для режима Full-Speed, устройства, работающие в режиме Hi-Speed, ведут себя на этой стадии как устройства в режиме Full-Speed). Так же иногда вокруг провода присутствует волокнистая обмотка для защиты от физических повреждений. .

Коннектор USB 3.0 тип B

Коннектор USB 3.0 тип А

Кабели и разъёмы USB 3.0

Недостатки USB

Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся. Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации.

USB и FireWire/1394

Протокол USB storage, представляющий собой метод передачи команд

Кроме того, USB storage не поддерживался в старых ОС (первоначальная Windows 98), и требовал установки драйвера. SBP-2 поддерживался и в них. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию прожига CD/DVD дисков на подключенном по USB дисководе, SBP-2 никогда не имел таких ограничений.

Шина USB строго ориентирована, потому соединение 2 компьютеров или же 2 периферийных устройств требует дополнительного оборудования. Некоторые производители поддерживают соединение принтера и сканера, или же фотоапарата и принтера, но эти реализации сильно завязаны на конкретного производителя и не стандартизированы. Шина 1394/FireWire не подвержена этому недостатку (можно соединить 2 видеокамеры).

Тем не менее, ввиду лицензионной политики Apple, а также намного более высокой сложности оборудования, 1394 менее распространен, материнские платы старых компьютеров не имеют 1394 контроллера. Что касается периферии, то поддержка 1394 обычно не встречается ни в чем, кроме видеокамер и корпусов для внешних жестких дисков и CD/DVD приводов.

См. также

  • FireWire
  • TransferJet

Источники

Ссылки

  • USB News (нем.)
  • List of USB ID’s (Vendors, devices and interfaces) (англ.)

Шины PCI и PCI Express подходят для соединения высокоскоро­стных периферийных устройств, но использовать интерфейс PCI для низкоско­ростных устройств ввода-вывода (например, мыши и клавиатуры) неэффективно.

Кроме того, для добавления новых уст­ройств использовались свободные ISA- и PCI-слоты, в которые вставлялись платы контроллеров УВВ.

При этом пользователь должен сам установить пе­реключатели и перемычки на, затем должен открыть систем­ный блок, вставить плату, закрыть системный блок и включить ком­пьютер.

Для многих этот процесс очень сложен и часто приводит к ошибкам. Кроме того, количество ISA- и PCI-слотов очень мало (обычно два или три).

В 1993 году представители семи компаний (Compaq, DEC, IBM, Intel, Micro­soft, NEC и Nothern Telecom) разработали шину, опти­мально подходящую для подсоединения низкоскоростных устройств.

Результатом их работы стала шина USB (Universal Serial Bus - универсальная последовательная шина), удовлетворяющую следующим требованиям:

  • пользователи не должны устанавливать переключатели и перемычки на платах и устройствах;
  • пользователи не должны открывать компьютер, чтобы установить новые устройства ввода-вывода;
  • должен существовать только один тип кабеля, подходящий для соедине­ния всех устройств;
  • устройства ввода-вывода должны получать питание через кабель;
  • должна быть возможность подсоединения к одному компьютеру до 127 устройств;
  • система должна поддерживать устройства реального времени (например,
    звуковые устройства, телефон);
  • должна быть возможность устанавливать устройства во время работы компьютера;
  • должна отсутствовать необходимость перезагружать компьютер после ус­тановки нового устройства;
  • производство новой шины и устройств ввода-вывода для нее не должно требовать больших затрат.

Общая пропускная способность первой версии шины (USB 1.0) составляет 12 Мбит/с.

Версия 2.0 работает на скорости 480 Мбит/с что вполне достаточно для принтеров, цифровых камер и многих других устройств. Предел был выбран для того, чтобы снизить стоимость шипы.

Версия USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с - что на порядок больше USB 2.0 (480 Мбит/с). Таким образ, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с

Шина USB состоит из корневого хаба (root hub), который вставляется в разъем главной шины (см, рис. 3.49). Этот корневой хаб (часто называемый корневым концентратором) содержит разъемы для кабелей, которые могут подсоединяться к устройствам ввода-вывода или к дополнительным хабам, чтобы увеличить ко­личество разъемов.

Таким образом, топология шины USB представляет собой дерево с корнем в корневом хабе, который находится внутри компьютера.



Кон­некторы (разъемы) кабеля со стороны устройства отличаются от коннекторов со стороны хаба, чтобы пользователь случайно не подсоединил кабель другой стороной.

Кабель состоит из четырех проводов: два из них предназначены для переда­чи данных, один - для питания (+5 В) и один - для земли. Система передает 0 изменением напряжения, а 1 - отсутствием изменения напряжения» поэтому длинная последовательность нулевых битов порождает поток регулярных им­пульсов.

Когда соединяется новое устройство ввода-вывода, корневой хаб обнаружи­вает этот факт и прерывает работу операционной системы.

Затем операционная система запрашивает новое устройство» выясняя, что оно собой представляет и какая пропускная способность шины для него требуется.

Если операционная система решает, что для этого устройства пропускной способности достаточно, она приписывает ему уникальный адрес (1-127) и загружает этот адрес и другую информацию в конфигурационные регистры внутри устройства.

Таким образом, новые устройства могут подсоединяться *ша лету», при этом пользователю не нужно устанавливать новые платы ISA или PCI.

Неинициализированные платы начинаются с адреса 0, поэтому к ним можно обращаться. Многие устройства снабжены встроенными сетевыми концентраторами для дополнительных уст­ройств. Например, монитор может содержать два хаба для правой и левой ко­лонок.

Шипа USB представляет собой ряд каналов между корневым хабом и устрой­ствами ввода-вывода. Каждое устройство может разбить свой канал максимум на 16 подканалов для различных типов данных (например, аудио и видео).

В ка­ждом канале или подканале данные перемещаются от корневого хаба к устройст­ву и обратно- Между двумя устройствами ввода-вывода обмена информацией не происходит.

Ровно через каждую миллисекунду (±0,05 мс) корневой хаб передает новый кадр, чтобы синхронизировать все устройства во времени. Кадр состоит из пакетов, первый из которых передается от хаба к устройству. Следующие пакеты кадра могут передаваться в том же направлении, а могут и в противоположном (от уст­ройства к хабу). На рис. 3,55 показаны четыре последовательных кадра.

В 1998 году была создана высокоскоростная версии USB, названной USB 2.0. Этот стандарт во многом аналогичен USB 1A и совместим с ним, однако к двум прежним скоростям в нем добавляется новая - 480 Мбайт/с.

3 Организации памяти в ЭВМ

3.1 Иерархическая организация памяти и принцип локальности ссылок

Память - совокупность устройств, служащих для приема, хране­ния и выдачи данных в центральный процессор или внешнюю среду компьютера. Основные операции с памятью - запись и чтение.

В вы­числительных системах память является одним из основных компо­нентов, определяющим как быстродействие, так и функциональные возможности всей системы.

Организация памяти имеет сложный ха­рактер и строится по иерархическому принципу. Ос­нов­ная идея иерархии памяти - согласование скоростей работы операционных устройств, в первую очередь процессора, с запоминающими устрой­ствами.

Иерархическая организация памяти имеет вид, представленный на рис. 3.1, где показаны диапазоны значений емкости и производи­тельности устройств памяти для современных компьютеров.


Р и с. 3.1. Иерархическая организация памяти

ОЗУ - оперативное запоминающее устройство;

ПЗУ - постоянное запоминаю­щее устройство;

CD/DVD - накопитель на оптических дисках;

HDD (Hard Disk Drive) - накопитель на жестком магнитном диске;

SSD (Solid State Drive) - накопитель на«твердом» диске

На рис. 3.1 видно, что на более высоких уровнях иерархии расположены устройства с меньшей емкостью памяти, но с большим быстродей­ствием.

Регистровая память или регистровый файл изготавливается в кри­сталле процессора по такой же технологии и имеет такое же быстро­действие, как и операционные элементы процессора.

Кэш-память первого уровня также выполняется внутри процессора, что дает воз­можность обращения к командам и данным с тактовой частотой рабо­ты процессора.

Во многих моделях процессоров кэш- память второго уровня интегрирована в ядро процессора.

Кэш-память третьего уровня выполняется в виде отдельной ми­кросхемы с высоким быстродействием, либо в процессоре, как в ар­хитектуре Nehalem.

Эффективность иерархической организации связана с важней­шим принципом локальности ссылок или принципом локальности по обращению.

При выполнении большинства программ было замечено, что ад­рес следующей команды будет расположен либо непосредственно за адресом выполняемой команды, либо недалеко от него.

При этом с очень высокой вероятностью данные, используемые этими команда­ми, обычно структурированы и расположены в последовательных ячейках памяти.

Кроме того, программы содержат множество не­больших циклов и подпрограмм, которые многократно повторяются в течение интервала времени.


На рис. 3.2 показаны размещенные в па­мяти два участка программы и соответствующие им области данных.

Р и с. 3.2. Расположение программы и данных в памяти и локальность ссылок

Это явление называется локальность ссылок или локальность по обращению. Известно правило «90/10» - то есть 90% времени работы программы связано с обращением к 10% адресного пространства этой программы.

3.2 Взаимодействие процессора и различных уровней памяти

Уровни иерархии памяти взаимосвязаны: все данные на одном уровне могут быть также найдены на более низком уровне, и все дан­ные на этом более низком уровне могут быть найдены на следующем нижележащем уровне и так далее.

В каждый момент времени идет об­мен с двумя близлежащими уровнями. Минимальная единица инфор­мации, которая может либо присутствовать, либо отсутствовать в двухуровневой иерархии, называется блоком.

Размер блока может быть либо фиксированным, либо переменным. Если этот размер за­фиксирован, то объем памяти является кратным размеру блока.

Успешное или неуспешное обращение к более высокому уровню называются соответственно попаданием (hit) или промахом (miss).

Попадание - обращение к объекту в памяти, который найден на более высоком уровне, в то время как промах означает, что он не найден на этом уровне.

Доля попаданий или коэффициент попаданий есть доля обращений, найденных на более высоком уровне.

Доля промахов есть доля обращений, которые не найдены на более высоком уровне.

Потери на промах - время для замещения блока в более высоком уровне на блок из более низкого уровня плюс время для пересылки этого блока в требуемое устройство (обычно в процессор).

Потери на промах включают в себя две компоненты: время доступа - время об­ращения к первому слову блока при промахе, и время пересылки - дополнительное время для пересылки оставшихся слов блока.

Время доступа связано с задержкой памяти более низкого уровня, в то время как время пересылки связано с полосой пропускания канала между устройствами памяти двух смежных уровней.

Инициатором обращения к памяти практически всегда является процессор. Исключение - режим прямого доступа к памяти, когда ор­ганизуется процесс передачи файлов между ОП и внешней памятью через соответствующую шину, минуя процессор.

В процессе выполнения программы процессор обрабатывает каждую команду и определяет исполнительный адрес А исп операнда.

При этом процессор «не знает», на каком уровне памяти находится этот исполнительный адрес, поэтому сразу формируется обращение к ОП.

Будем рассматривать блочную организацию данных.

· В регистровой памяти данные записы­ваются блоками в виде слов длиной 16, 32, 64 и 128 бит .

· В кэш-памя­ти блоком является строка длиной 16, 32 или 64 байта . В ОП чаще всего используются страницы по 4 - 8 Кб .

· На жестких дисках блоки - это сектора по 512 байт . Как правило, размер страницы ОП кратен длине сектора винчестера.

Если в системе есть кэш-память, то контроллер кэша проверяет, содержит ли кэш запрашиваемый адрес А исп. Если данные с таким ад­ресом есть, то блок с этими данными считывается из кэш-памяти в процессор, а обращение к ОП блокируется.

Если в кэш-памяти нет данных с адресом А исп, то нужный блок ищется в оперативной памя­ти, затем загружается в кэш-память и одновременно передается в про­цессор.

Аналогично, при обращении к основной памяти при попадании блок данных передается в процессор. При промахе данные загружа­ются с жесткого или оптического диска в ОП.

При обращении к архивной памяти блок данных, то есть иско­мый диск, автоматически передается из хранилища и устанавливается в дисковод компьютера.

3.3 Адресная память

В адресном запоминающем устройстве (ЗУ) каждый запоминаю­щий элемент памяти - ячейка, имеет адрес, который показывает его расположение в адресном пространстве.

Поиск информации произво­дится по номеру (адресу) запоминающей ячейки, хранящей данные.

Совокупность N запоминающих ячеек образует запоминающую матрицу ЗМ.

Для компактного расположения запоминающих ячеек и упроще­ния доступа к ним ЗМ организуется как трехмерный куб.

В нем име­ются две адресные координаты A 1 и A 2 , а по третьей координате рас­полагаются

n-разрядные слова.

Если адрес, поступающий с ША, име­ет разрядность к, то он разделяется на две компоненты по k/2 адрес­ных бита:

M= 2 k /2 х 2 k /2 = 2 k .

В этом случае вместо одного ДША с M выходами используются два дешифратора с 2 k /2 выходами, что значи­тельно упрощает схемную реализацию.

На рис. 3.3. показана структурная схема адресного запоминающе­го устройства.

Запоминающая матрица ЗМ имеет две координаты: строки и столбцы. Блок управления (БУ) управляет устройствами ЗУ, получая извне сигналы: RAS, CAS, СЕ, WE и OE.

Сигнал выбора микросхемы СЕ разрешает работу именно этой микросхемы памяти.

Режим чтения или записи определяется сигна­лом WE. На все время, пока микросхема не использует шину данных ШД, информационные выходы регистров переводятся сигналом OE в третье состояние с высоким выходным сопротивлением.

Адрес строки на шине ША сопровождается сигналом RAS, разре­шающим прием адреса и его дешифрацию. После этого сигнал CAS разрешает прием и дешифрацию адреса столбца.

Каждый столбец имеет вторую линию чтения/записи, - для данных. Эти линии на рис. 3.3 показаны пунктиром.

Управление операциями с памятью осуществляется контролле­ром памяти. На каждую операцию требуется, как минимум, пять тактов.

Указание типа операции (чтение или запись) и установка ад­реса строки.


Формирование сигнала RAS.

Установка адреса столбца.

Формирование сигнала CAS.

Запись или выдача данных и возврат сигналов RAS и CAS в неактивное состояние.

Р и с. 3.3. Адресное запоминающее устройство

ЗМ - запоминающая матрица;

RAS - сигнал строба строки (Row Address Strobe);

CAS - сигнал строба столбца(Column Address Strobe);

WE - разрешение записи (Write Enable);

OE - разрешение выдачи выходных сигналов (Output Enable);

CS - выбор микросхемы (Chip Select)

Латентность памяти и тайминги

Под латентностью понимают задержку между поступлением команды в память и ее выполнением. Память не может мгновенно пере­ходить из одного состояния в другое. Для стабильного функциониро­вания памяти необходим пропуск нескольких циклов при изменении состояния ячейки памяти.

Например, после выполнения команды чте­ния должна следовать задержка CAS (CAS La­tency). Это и есть ла­тентность (CL) - наиболее важная характеристика памяти.

Очевидно, чем меньше латентность, тем быстрее работает память.

Латентность памяти определяется ее таймингами, то есть задерж­ками, измеряемыми в количестве тактов между отдельными команда­ми.

Существует несколько видов таймингов памяти.

CL: CAS Latency - время, проходящее от момента подачи команды в память до начала ответа на этот запрос. Это вре­мя, которое проходит между запросом процессора на полу­чение некоторых данных из памяти и моментом выдачи этих данных памятью.

RAS-to-CAS (tRCD): задержка от RAS до CAS - время, ко­торое должно пройти с момента обращения к строке матри­цы (RAS), до момента обращения к ее столбцу матрицы (CAS), с целью выборки данных в которых хранятся нужные данные.

RAS Precharge(tRP) - интервал времени между моментом за­крытия доступа к одной строке и началом доступа к другой строке данных.

Active to Precharge или Cycle Time (tRAS) - пауза, которая нужна памяти, чтобы вернуться в состояние ожидания сле­дующего запроса.

CMD: Скорость поступления команды (Command Rate) - время с момента активации чипа памяти до момента, когда первая команда может обратиться к ней. Обычно это T1 (один тактовый цикл) или T2 (два тактовых цикла).

Производительность памяти растет быстро, а ее латентность практически не улучшается.

В некоторых новых типах памяти с большей пропускной способностью латентность оказывается выше, чем в предыдущих реализациях.

В течение последних 25-ти лет латентность оперативной памяти уменьшилась всего в три раза. При этом тактовая частота процессо­ров возросла в сотни раз.

3.4 Ассоциативная память

Понятие «ассоциация» относится, прежде всего, к памяти, в кото­рой выборка осуществляется не по адресному принципу, а по содер­жанию.

Ассоциативная память использует запись и чтение данных таким образом, чтобы обеспечить выборку слов, имеющих заданное содер­жание определенных полей.


Поиск ведется с использованием ассоци­ативных признаков. Структура такой памяти представлена на рис. 3.4 .

Р и с. 3.4. Ассоциативная память

ЗМ - запоминающая матрица;

ШП - шина признака;

ШД - шина данных

Память хранит M ячеек для m+1 -разрядных слов, имеющих зна­чения признаков.

Служебный m +1-й разряд показывает: «0» - ячейка свободна для записи, «1» - ячейка занята. Значения ассоциативного признака формируются регистром маски из полей признаков, посту­пающих из шины признаков ШП в регистр ассоциативного признака.

Поиск в запоминающей матрице выполняется за один такт одновре­менно по полям ассоциативных признаков всех хранящихся слов.

Это является отличительной чертой ассоциативных устройств памяти.

Ре­ализация такого поиска осуществляется комбинационными схемами совпадения на базе элементов «сложение по модулю 2».